Cargando…
Cloud-Based Federated Learning Implementation Across Medical Centers
Building well-performing machine learning (ML) models in health care has always been exigent because of the data-sharing concerns, yet ML approaches often require larger training samples than is afforded by one institution. This paper explores several federated learning implementations by applying t...
Autores principales: | Rajendran, Suraj, Obeid, Jihad S., Binol, Hamidullah, D`Agostino, Ralph, Foley, Kristie, Zhang, Wei, Austin, Philip, Brakefield, Joey, Gurcan, Metin N., Topaloglu, Umit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Clinical Oncology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8140794/ https://www.ncbi.nlm.nih.gov/pubmed/33411624 http://dx.doi.org/10.1200/CCI.20.00060 |
Ejemplares similares
-
In the Pursuit of Privacy: The Promises and Predicaments of Federated Learning in Healthcare
por: Topaloglu, Mustafa Y., et al.
Publicado: (2021) -
Convolutional Neural Network-Based Clinical Predictors of Oral Dysplasia: Class Activation Map Analysis of Deep Learning Results
por: Camalan, Seda, et al.
Publicado: (2021) -
How to Build the Cloud of Clouds - Cloud Federation
por: TARTARINI, Luca
Publicado: (2014) -
Creating learning health systems and the emerging role of biomedical informatics
por: Kohn, Martin S., et al.
Publicado: (2021) -
Federal cloud computing: the definitive guide for cloud service providers
por: Metheny, Matthew
Publicado: (2017)