Cargando…
Cost-effectiveness analysis for HbA1c test intervals to screen patients with type 2 diabetes based on risk stratification
BACKGROUND: The best HbA1c test interval strategy for detecting new type 2 diabetes mellitus (T2DM) cases in healthy individuals should be determined with consideration of HbA1c test characteristics, risk stratification towards T2DM and cost effectiveness. METHODS: State transition models were const...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8141129/ https://www.ncbi.nlm.nih.gov/pubmed/34022872 http://dx.doi.org/10.1186/s12902-021-00771-0 |
Sumario: | BACKGROUND: The best HbA1c test interval strategy for detecting new type 2 diabetes mellitus (T2DM) cases in healthy individuals should be determined with consideration of HbA1c test characteristics, risk stratification towards T2DM and cost effectiveness. METHODS: State transition models were constructed to investigate the optimal screening interval for new cases of T2DM among each age- and BMI-stratified health individuals. Age was stratified into 30–44-, 45–59-, and 60–74-year-old age groups, and BMI was also stratified into underweight, normal, overweight and obesity. In each model, different HbA1c test intervals were evaluated with respect to the incremental cost-effectiveness ratio (ICER) and costs per quality-adjusted life year (QALY). Annual intervals (Japanese current strategy), every 3 years (recommendations in US and UK) and intervals which are tailored to each risk stratification group were compared. All model parameters, including costs for screening and treatment, rates for complications and mortality and utilities, were taken from published studies. The willingness-to-pay threshold in the cost-effectiveness analysis was set to US $50,000/QALY. RESULTS: The HbA1c test interval for detecting T2DM in healthy individuals varies by age and BMI. Three-year intervals were the most cost effective in obesity at all ages—30-44: $15,034/QALY, 45–59: $11,849/QALY, 60–74: $8685/QALY—compared with the other two interval strategies. The three-year interval was also the most cost effective in the 60–74-year-old age groups—underweight: $11,377/QALY, normal: $18,123/QALY, overweight: $12,537/QALY—and in the overweight 45–59-year-old group; $18,918/QALY. In other groups, the screening interval for detecting T2DM was found to be longer than 3 years, as previously reported. Annual screenings were dominated in many groups with low BMI and in younger age groups. Based on the probability distribution of the ICER, results were consistent among any groups. CONCLUSIONS: The three-year screening interval was optimal among elderly at all ages, the obesity at all ages and the overweight in 45–59-year-old group. For those sin the low-BMI and younger age groups, the optimal HbA1c test interval could be longer than 3 years. Annual screening to detect T2DM was not cost effective and should not be applied in any population. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12902-021-00771-0. |
---|