Cargando…

Development and Validation of a Web-Based Severe COVID-19 Risk Prediction Model

BACKGROUND: Coronavirus disease 2019 (COVID-19) carries high morbidity and mortality globally. Identification of patients at risk for clinical deterioration upon presentation would aid in triaging, prognostication, and allocation of resources and experimental treatments. RESEARCH QUESTION: Can we de...

Descripción completa

Detalles Bibliográficos
Autores principales: Woo, Sang H., Rios-Diaz, Arturo J., Kubey, Alan A., Cheney-Peters, Dianna R., Ackermann, Lily L., Chalikonda, Divya M., Venkataraman, Chantel M., Riley, Joshua M., Baram, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Southern Society for Clinical Investigation. Published by Elsevier Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8141270/
https://www.ncbi.nlm.nih.gov/pubmed/34029558
http://dx.doi.org/10.1016/j.amjms.2021.04.001
Descripción
Sumario:BACKGROUND: Coronavirus disease 2019 (COVID-19) carries high morbidity and mortality globally. Identification of patients at risk for clinical deterioration upon presentation would aid in triaging, prognostication, and allocation of resources and experimental treatments. RESEARCH QUESTION: Can we develop and validate a web-based risk prediction model for identification of patients who may develop severe COVID-19, defined as intensive care unit (ICU) admission, mechanical ventilation, and/or death? METHODS: This retrospective cohort study reviewed 415 patients admitted to a large urban academic medical center and community hospitals. Covariates included demographic, clinical, and laboratory data. The independent association of predictors with severe COVID-19 was determined using multivariable logistic regression. A derivation cohort (n=311, 75%) was used to develop the prediction models. The models were tested by a validation cohort (n=104, 25%). RESULTS: The median age was 66 years (Interquartile range [IQR] 54-77) and the majority were male (55%) and non-White (65.8%). The 14-day severe COVID-19 rate was 39.3%; 31.7% required ICU, 24.6% mechanical ventilation, and 21.2% died. Machine learning algorithms and clinical judgment were used to improve model performance and clinical utility, resulting in the selection of eight predictors: age, sex, dyspnea, diabetes mellitus, troponin, C-reactive protein, D-dimer, and aspartate aminotransferase. The discriminative ability was excellent for both the severe COVID-19 (training area under the curve [AUC]=0.82, validation AUC=0.82) and mortality (training AUC= 0.85, validation AUC=0.81) models. These models were incorporated into a mobile-friendly website. CONCLUSIONS: This web-based risk prediction model can be used at the bedside for prediction of severe COVID-19 using data mostly available at the time of presentation.