Cargando…
Dual attention multiple instance learning with unsupervised complementary loss for COVID-19 screening
Chest computed tomography (CT) based analysis and diagnosis of the Coronavirus Disease 2019 (COVID-19) plays a key role in combating the outbreak of the pandemic that has rapidly spread worldwide. To date, the disease has infected more than 18 million people with over 690k deaths reported. Reverse t...
Autores principales: | Chikontwe, Philip, Luna, Miguel, Kang, Myeongkyun, Hong, Kyung Soo, Ahn, June Hong, Park, Sang Hyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8141701/ https://www.ncbi.nlm.nih.gov/pubmed/34102477 http://dx.doi.org/10.1016/j.media.2021.102105 |
Ejemplares similares
-
Quantitative Assessment of Chest CT Patterns in COVID-19 and Bacterial Pneumonia Patients: a Deep Learning Perspective
por: Kang, Myeongkyun, et al.
Publicado: (2021) -
Progressively Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation
por: Lee, Hong-Yu, et al.
Publicado: (2023) -
Enhancing unsupervised medical entity linking with multi-instance learning
por: Yan, Cheng, et al.
Publicado: (2021) -
ESAMask: Real-Time Instance Segmentation Fused with Efficient Sparse Attention
por: Zhang, Qian, et al.
Publicado: (2023) -
Tracking Highly Similar Rat Instances under Heavy Occlusions: An Unsupervised Deep Generative Pipeline
por: Gelencsér-Horváth, Anna, et al.
Publicado: (2022)