Cargando…
An Immunometabolic Shift Modulates Cytotoxic Lymphocyte Activation During Melanoma Progression in TRPA1 Channel Null Mice
Melanoma skin cancer is extremely aggressive with increasing incidence and mortality. Among the emerging therapeutic targets in the treatment of cancer, the family of transient receptor potential channels (TRPs) has been reported as a possible pharmacological target. Specifically, the ankyrin subfam...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8141816/ https://www.ncbi.nlm.nih.gov/pubmed/34041030 http://dx.doi.org/10.3389/fonc.2021.667715 |
_version_ | 1783696446331027456 |
---|---|
author | Forni, Maria Fernanda Domínguez-Amorocho, Omar Alberto de Assis, Leonardo Vinícius Monteiro Kinker, Gabriela Sarti Moraes, Maria Nathalia Castrucci, Ana Maria de Lauro Câmara, Niels Olsen Saraiva |
author_facet | Forni, Maria Fernanda Domínguez-Amorocho, Omar Alberto de Assis, Leonardo Vinícius Monteiro Kinker, Gabriela Sarti Moraes, Maria Nathalia Castrucci, Ana Maria de Lauro Câmara, Niels Olsen Saraiva |
author_sort | Forni, Maria Fernanda |
collection | PubMed |
description | Melanoma skin cancer is extremely aggressive with increasing incidence and mortality. Among the emerging therapeutic targets in the treatment of cancer, the family of transient receptor potential channels (TRPs) has been reported as a possible pharmacological target. Specifically, the ankyrin subfamily, representing TRPA1 channels, can act as a pro-inflammatory hub. These channels have already been implicated in the control of intracellular metabolism in several cell models, but little is known about their role in immune cells, and how it could affect tumor progression in a process known as immune surveillance. Here, we investigated the participation of the TRPA1 channel in the immune response against melanoma tumor progression in a mouse model. Using Trpa1 (+/+) and Trpa1 (-/-) animals, we evaluated tumor progression using murine B16-F10 cells and assessed isolated CD8+ T cells for respiratory and cytotoxic functions. Tumor growth was significantly reduced in Trpa1 (-/-) animals. We observed an increase in the frequency of circulating lymphocytes. Using a dataset of CD8+ T cells isolated from metastatic melanoma patients, we found that TRPA1 reduction correlates with several immunological pathways. Naïve CD8+ T cells from Trpa1 (+/+) and Trpa1 (-/-) animals showed different mitochondrial respiration and glycolysis profiles. However, under CD3/CD28 costimulatory conditions, the absence of TRPA1 led to an even more extensive metabolic shift, probably linked to a greater in vitro killling ability of Trpa1 (-/-) CD8+ T cells. Therefore, these data demonstrate an unprecedented role of TRPA1 channel in the metabolism control of the immune system cells during carcinogenesis. |
format | Online Article Text |
id | pubmed-8141816 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-81418162021-05-25 An Immunometabolic Shift Modulates Cytotoxic Lymphocyte Activation During Melanoma Progression in TRPA1 Channel Null Mice Forni, Maria Fernanda Domínguez-Amorocho, Omar Alberto de Assis, Leonardo Vinícius Monteiro Kinker, Gabriela Sarti Moraes, Maria Nathalia Castrucci, Ana Maria de Lauro Câmara, Niels Olsen Saraiva Front Oncol Oncology Melanoma skin cancer is extremely aggressive with increasing incidence and mortality. Among the emerging therapeutic targets in the treatment of cancer, the family of transient receptor potential channels (TRPs) has been reported as a possible pharmacological target. Specifically, the ankyrin subfamily, representing TRPA1 channels, can act as a pro-inflammatory hub. These channels have already been implicated in the control of intracellular metabolism in several cell models, but little is known about their role in immune cells, and how it could affect tumor progression in a process known as immune surveillance. Here, we investigated the participation of the TRPA1 channel in the immune response against melanoma tumor progression in a mouse model. Using Trpa1 (+/+) and Trpa1 (-/-) animals, we evaluated tumor progression using murine B16-F10 cells and assessed isolated CD8+ T cells for respiratory and cytotoxic functions. Tumor growth was significantly reduced in Trpa1 (-/-) animals. We observed an increase in the frequency of circulating lymphocytes. Using a dataset of CD8+ T cells isolated from metastatic melanoma patients, we found that TRPA1 reduction correlates with several immunological pathways. Naïve CD8+ T cells from Trpa1 (+/+) and Trpa1 (-/-) animals showed different mitochondrial respiration and glycolysis profiles. However, under CD3/CD28 costimulatory conditions, the absence of TRPA1 led to an even more extensive metabolic shift, probably linked to a greater in vitro killling ability of Trpa1 (-/-) CD8+ T cells. Therefore, these data demonstrate an unprecedented role of TRPA1 channel in the metabolism control of the immune system cells during carcinogenesis. Frontiers Media S.A. 2021-05-10 /pmc/articles/PMC8141816/ /pubmed/34041030 http://dx.doi.org/10.3389/fonc.2021.667715 Text en Copyright © 2021 Forni, Domínguez-Amorocho, de Assis, Kinker, Moraes, Castrucci and Câmara https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Oncology Forni, Maria Fernanda Domínguez-Amorocho, Omar Alberto de Assis, Leonardo Vinícius Monteiro Kinker, Gabriela Sarti Moraes, Maria Nathalia Castrucci, Ana Maria de Lauro Câmara, Niels Olsen Saraiva An Immunometabolic Shift Modulates Cytotoxic Lymphocyte Activation During Melanoma Progression in TRPA1 Channel Null Mice |
title | An Immunometabolic Shift Modulates Cytotoxic Lymphocyte Activation During Melanoma Progression in TRPA1 Channel Null Mice |
title_full | An Immunometabolic Shift Modulates Cytotoxic Lymphocyte Activation During Melanoma Progression in TRPA1 Channel Null Mice |
title_fullStr | An Immunometabolic Shift Modulates Cytotoxic Lymphocyte Activation During Melanoma Progression in TRPA1 Channel Null Mice |
title_full_unstemmed | An Immunometabolic Shift Modulates Cytotoxic Lymphocyte Activation During Melanoma Progression in TRPA1 Channel Null Mice |
title_short | An Immunometabolic Shift Modulates Cytotoxic Lymphocyte Activation During Melanoma Progression in TRPA1 Channel Null Mice |
title_sort | immunometabolic shift modulates cytotoxic lymphocyte activation during melanoma progression in trpa1 channel null mice |
topic | Oncology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8141816/ https://www.ncbi.nlm.nih.gov/pubmed/34041030 http://dx.doi.org/10.3389/fonc.2021.667715 |
work_keys_str_mv | AT fornimariafernanda animmunometabolicshiftmodulatescytotoxiclymphocyteactivationduringmelanomaprogressionintrpa1channelnullmice AT dominguezamorochoomaralberto animmunometabolicshiftmodulatescytotoxiclymphocyteactivationduringmelanomaprogressionintrpa1channelnullmice AT deassisleonardoviniciusmonteiro animmunometabolicshiftmodulatescytotoxiclymphocyteactivationduringmelanomaprogressionintrpa1channelnullmice AT kinkergabrielasarti animmunometabolicshiftmodulatescytotoxiclymphocyteactivationduringmelanomaprogressionintrpa1channelnullmice AT moraesmarianathalia animmunometabolicshiftmodulatescytotoxiclymphocyteactivationduringmelanomaprogressionintrpa1channelnullmice AT castruccianamariadelauro animmunometabolicshiftmodulatescytotoxiclymphocyteactivationduringmelanomaprogressionintrpa1channelnullmice AT camaranielsolsensaraiva animmunometabolicshiftmodulatescytotoxiclymphocyteactivationduringmelanomaprogressionintrpa1channelnullmice AT fornimariafernanda immunometabolicshiftmodulatescytotoxiclymphocyteactivationduringmelanomaprogressionintrpa1channelnullmice AT dominguezamorochoomaralberto immunometabolicshiftmodulatescytotoxiclymphocyteactivationduringmelanomaprogressionintrpa1channelnullmice AT deassisleonardoviniciusmonteiro immunometabolicshiftmodulatescytotoxiclymphocyteactivationduringmelanomaprogressionintrpa1channelnullmice AT kinkergabrielasarti immunometabolicshiftmodulatescytotoxiclymphocyteactivationduringmelanomaprogressionintrpa1channelnullmice AT moraesmarianathalia immunometabolicshiftmodulatescytotoxiclymphocyteactivationduringmelanomaprogressionintrpa1channelnullmice AT castruccianamariadelauro immunometabolicshiftmodulatescytotoxiclymphocyteactivationduringmelanomaprogressionintrpa1channelnullmice AT camaranielsolsensaraiva immunometabolicshiftmodulatescytotoxiclymphocyteactivationduringmelanomaprogressionintrpa1channelnullmice |