Cargando…
DANE-MDA: Predicting microRNA-disease associations via deep attributed network embedding
Predicting the microRNA-disease associations by using computational methods is conductive to the efficiency of costly and laborious traditional bio-experiments. In this study, we propose a computational machine learning-based method (DANE-MDA) that preserves integrated structure and attribute featur...
Autores principales: | Ji, Bo-Ya, You, Zhu-Hong, Wang, Yi, Li, Zheng-Wei, Wong, Leon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8141887/ https://www.ncbi.nlm.nih.gov/pubmed/34041455 http://dx.doi.org/10.1016/j.isci.2021.102455 |
Ejemplares similares
-
NEMPD: a network embedding-based method for predicting miRNA-disease associations by preserving behavior and attribute information
por: Ji, Bo-Ya, et al.
Publicado: (2020) -
Gran danés
por: Taragano de Azar, Rosa
Publicado: (1989) -
Anchor Link Prediction across Attributed Networks via Network Embedding
por: Wang, Shaokai, et al.
Publicado: (2019) -
MicroRNA-Integrated and Network-Embedded Gene Selection with Diffusion Distance
por: Huang, Di, et al.
Publicado: (2010) -
Protein complexes identification based on go attributed network embedding
por: Xu, Bo, et al.
Publicado: (2018)