Cargando…
PredTAD: A machine learning framework that models 3D chromatin organization alterations leading to oncogene dysregulation in breast cancer cell lines
Topologically associating domains, or TADs, play important roles in genome organization and gene regulation; however, they are often altered in diseases. High-throughput chromatin conformation capturing assays, such as Hi-C, can capture domains of increased interactions, and TADs and boundaries can...
Autores principales: | Chyr, Jacqueline, Zhang, Zhigang, Chen, Xi, Zhou, Xiaobo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8142020/ https://www.ncbi.nlm.nih.gov/pubmed/34093998 http://dx.doi.org/10.1016/j.csbj.2021.05.013 |
Ejemplares similares
-
Recent evidence that TADs and chromatin loops are dynamic structures
por: Hansen, Anders S., et al.
Publicado: (2017) -
TAD cliques predict key features of chromatin organization
por: Liyakat Ali, Tharvesh M., et al.
Publicado: (2021) -
PredPhos: an ensemble framework for structure-based prediction of phosphorylation sites
por: Gao, Yong, et al.
Publicado: (2016) -
Regulation of single-cell genome organization into TADs and chromatin nanodomains
por: Szabo, Quentin, et al.
Publicado: (2020) -
Reconstituted TAD-size chromatin fibers feature heterogeneous nucleosome clusters
por: Korolev, Nikolay, et al.
Publicado: (2022)