Cargando…

Effect of low-dose total-body radiotherapy on immune microenvironment

The history of low-dose total-body irradiation (LTBI) as a means of radiotherapy for treating malignant tumors can be traced back to the 1920s. Despite this very low total dose, LTBI can induce long-term remissions. Tumor cells are known to change and maintain their own survival and development cond...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Zhuo, Wu, Zhouxue, Muluh, Tobias Achu, Fu, Shaozhi, Wu, Jingbo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Neoplasia Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8142085/
https://www.ncbi.nlm.nih.gov/pubmed/34020371
http://dx.doi.org/10.1016/j.tranon.2021.101118
Descripción
Sumario:The history of low-dose total-body irradiation (LTBI) as a means of radiotherapy for treating malignant tumors can be traced back to the 1920s. Despite this very low total dose, LTBI can induce long-term remissions. Tumor cells are known to change and maintain their own survival and development conditions through autocrine and paracrine signaling. LTBI can change the tumor microenvironment, enhance the infiltration of activated T cells, and trigger inflammatory processes. LTBI-mediated immune response can exert systemic long-term anti-tumor effects, and can induce tumor regression at the primary site and metastatic sites. With a continuous improvement in the anti-tumor immune microenvironment in the field of tumor therapy, LTBI provides more choices to comprehensively treat of tumors. The present study aimed to explore the experimental research mechanism of LTBI and immune microenvironment, and discuss the difficulties and development prospects of applying LTBI to tumor treatment.