Cargando…
Predicting phosphorylation sites using machine learning by integrating the sequence, structure, and functional information of proteins
BACKGROUND: Post-translational modification (PTM) is a biological process that alters proteins and is therefore involved in the regulation of various cellular activities and pathogenesis. Protein phosphorylation is an essential process and one of the most-studied PTMs: it occurs when a phosphate gro...
Autores principales: | Jamal, Salma, Ali, Waseem, Nagpal, Priya, Grover, Abhinav, Grover, Sonam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8142496/ https://www.ncbi.nlm.nih.gov/pubmed/34030700 http://dx.doi.org/10.1186/s12967-021-02851-0 |
Ejemplares similares
-
Computational models for the prediction of adverse cardiovascular drug reactions
por: Jamal, Salma, et al.
Publicado: (2019) -
Machine Learning From Molecular Dynamics Trajectories to Predict Caspase-8 Inhibitors Against Alzheimer’s Disease
por: Jamal, Salma, et al.
Publicado: (2019) -
Long-range replica exchange molecular dynamics guided drug repurposing against tyrosine kinase PtkA of Mycobacterium tuberculosis
por: Nagpal, Priya, et al.
Publicado: (2020) -
Integrating network, sequence and functional features using machine learning approaches towards identification of novel Alzheimer genes
por: Jamal, Salma, et al.
Publicado: (2016) -
Artificial Intelligence and Machine learning based prediction of resistant and susceptible mutations in Mycobacterium tuberculosis
por: Jamal, Salma, et al.
Publicado: (2020)