Cargando…

Taxonomic variations in the gut microbiome of gout patients with and without tophi might have a functional impact on urate metabolism

OBJECTIVE: To evaluate the taxonomic composition of the gut microbiome in gout patients with and without tophi formation, and predict bacterial functions that might have an impact on urate metabolism. METHODS: Hypervariable V3–V4 regions of the bacterial 16S rRNA gene from fecal samples of gout pati...

Descripción completa

Detalles Bibliográficos
Autores principales: Méndez-Salazar, Eder Orlando, Vázquez-Mellado, Janitzia, Casimiro-Soriguer, Carlos S., Dopazo, Joaquin, Çubuk, Cankut, Zamudio-Cuevas, Yessica, Francisco-Balderas, Adriana, Martínez-Flores, Karina, Fernández-Torres, Javier, Lozada-Pérez, Carlos, Pineda, Carlos, Sánchez-González, Austreberto, Silveira, Luis H., Burguete-García, Ana I., Orbe-Orihuela, Citlalli, Lagunas-Martínez, Alfredo, Vazquez-Gomez, Alonso, López-Reyes, Alberto, Palacios-González, Berenice, Martínez-Nava, Gabriela Angélica
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8142508/
https://www.ncbi.nlm.nih.gov/pubmed/34030623
http://dx.doi.org/10.1186/s10020-021-00311-5
Descripción
Sumario:OBJECTIVE: To evaluate the taxonomic composition of the gut microbiome in gout patients with and without tophi formation, and predict bacterial functions that might have an impact on urate metabolism. METHODS: Hypervariable V3–V4 regions of the bacterial 16S rRNA gene from fecal samples of gout patients with and without tophi (n = 33 and n = 25, respectively) were sequenced and compared to fecal samples from 53 healthy controls. We explored predictive functional profiles using bioinformatics in order to identify differences in taxonomy and metabolic pathways. RESULTS: We identified a microbiome characterized by the lowest richness and a higher abundance of Phascolarctobacterium, Bacteroides, Akkermansia, and Ruminococcus_gnavus_group genera in patients with gout without tophi when compared to controls. The Proteobacteria phylum and the Escherichia-Shigella genus were more abundant in patients with tophaceous gout than in controls. Fold change analysis detected nine genera enriched in healthy controls compared to gout groups (Bifidobacterium, Butyricicoccus, Oscillobacter, Ruminococcaceae_UCG_010, Lachnospiraceae_ND2007_group, Haemophilus, Ruminococcus_1, Clostridium_sensu_stricto_1, and Ruminococcaceae_UGC_013). We found that the core microbiota of both gout groups shared Bacteroides caccae, Bacteroides stercoris ATCC 43183, and Bacteroides coprocola DSM 17136. These bacteria might perform functions linked to one-carbon metabolism, nucleotide binding, amino acid biosynthesis, and purine biosynthesis. Finally, we observed differences in key bacterial enzymes involved in urate synthesis, degradation, and elimination. CONCLUSION: Our findings revealed that taxonomic variations in the gut microbiome of gout patients with and without tophi might have a functional impact on urate metabolism. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s10020-021-00311-5.