Cargando…
Visual adaptation selective for individual limbs reveals hierarchical human body representation
The spatial relationships between body parts are a rich source of information for person perception, with even simple pairs of parts providing highly valuable information. Computation of these relationships would benefit from a hierarchical representation, where body parts are represented individual...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8142707/ https://www.ncbi.nlm.nih.gov/pubmed/34007989 http://dx.doi.org/10.1167/jov.21.5.18 |
Sumario: | The spatial relationships between body parts are a rich source of information for person perception, with even simple pairs of parts providing highly valuable information. Computation of these relationships would benefit from a hierarchical representation, where body parts are represented individually. We hypothesized that the human visual system makes use of such representations. To test this hypothesis, we used adaptation to determine whether observers were sensitive to changes in the length of one body part relative to another. Observers viewed forearm/upper arm pairs where the forearm had been either lengthened or shortened, judging the perceived length of the forearm. Observers then adapted to a variety of different stimuli (e.g., arms, objects, etc.) in different orientations and visual field locations. We found that following adaptation to distorted limbs, but not non-limb objects, observers experienced a shift in perceived forearm length. Furthermore, this effect partially transferred across different orientations and visual field locations. Taken together, these results suggest the effect arises in high level mechanisms specialized for specific body parts, providing evidence for a representation of bodies based on parts and their relationships. |
---|