Cargando…

Performance of PVDF Based Membranes with 2D Materials for Membrane Assisted-Crystallization Process

Membrane crystallization (MCr) is a promising and innovative process for the recovery of freshwater from seawater and for the production of salt crystals from the brine streams of desalination plants. In the present work, composite polymeric membranes for membrane crystallization were fabricated usi...

Descripción completa

Detalles Bibliográficos
Autores principales: Frappa, Mirko, Macedonio, Francesca, Gugliuzza, Annarosa, Jin, Wanqin, Drioli, Enrico
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8143142/
https://www.ncbi.nlm.nih.gov/pubmed/33919213
http://dx.doi.org/10.3390/membranes11050302
Descripción
Sumario:Membrane crystallization (MCr) is a promising and innovative process for the recovery of freshwater from seawater and for the production of salt crystals from the brine streams of desalination plants. In the present work, composite polymeric membranes for membrane crystallization were fabricated using graphene and bismuth telluride inks prepared according to the wet-jet milling (WJM) technology. A comparison between PVDF-based membranes containing a few layers of graphene or bismuth telluride and PVDF-pristine membranes was carried out. Among the 2D composite membranes, PVDF with bismuth telluride at higher concentration (7%) exhibited the highest flux (about 3.9 L∙m(−2)h(−1), in MCr experiments performed with 5 M NaCl solution as feed, and at a temperature of 34 ± 0.2 °C at the feed side and 11 ± 0.2 °C at the permeate side). The confinement of graphene and bismuth telluride in PVDF membranes produced more uniform NaCl crystals with respect to the pristine PVDF membrane, especially in the case of few-layer graphene. All the membranes showed rejection equal to or higher than 99.9% (up to 99.99% in the case of the membrane with graphene). The high rejection together with the good trans-membrane flux confirmed the interesting performance of the process, without any wetting phenomena, at least during the performed crystallization tests.