Cargando…

Predicting image credibility in fake news over social media using multi-modal approach

Social media are the main contributors to spreading fake images. Fake images are manipulated images altered through software or by other means to change the information they convey. Fake images propagated over microblogging platforms generate misrepresentation and stimulate polarization in the peopl...

Descripción completa

Detalles Bibliográficos
Autores principales: Singh, Bhuvanesh, Sharma, Dilip Kumar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer London 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8143443/
https://www.ncbi.nlm.nih.gov/pubmed/34054227
http://dx.doi.org/10.1007/s00521-021-06086-4
Descripción
Sumario:Social media are the main contributors to spreading fake images. Fake images are manipulated images altered through software or by other means to change the information they convey. Fake images propagated over microblogging platforms generate misrepresentation and stimulate polarization in the people. Detection of fake images shared over social platforms is extremely critical to mitigating its spread. Fake images are often associated with textual data. Hence, a multi-modal framework is employed utilizing visual and textual feature learning. However, few multi-modal frameworks are already proposed; they are further dependent on additional tasks to learn the correlation between modalities. In this paper, an efficient multi-modal approach is proposed, which detects fake images of microblogging platforms. No further additional subcomponents are required. The proposed framework utilizes explicit convolution neural network model EfficientNetB0 for images and sentence transformer for text analysis. The feature embedding from visual and text is passed through dense layers and later fused to predict fake images. To validate the effectiveness, the proposed model is tested upon a publicly available microblogging dataset, MediaEval (Twitter) and Weibo, where the accuracy prediction of 85.3% and 81.2% is observed, respectively. The model is also verified against the newly created latest Twitter dataset containing images based on India's significant events in 2020. The experimental results illustrate that the proposed model performs better than other state-of-art multi-modal frameworks.