Cargando…
The Effect of Temperature on the Hypersensitive Response (HR) in the Brassica napus–Leptosphaeria maculans Pathosystem
Temperature is considered one of the crucial environmental elements in plant pathological interactions, and previous studies have indicated that there is a relationship between temperature change and host–pathogen interactions. The objective of this research is to investigate the link between temper...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8143495/ https://www.ncbi.nlm.nih.gov/pubmed/33922044 http://dx.doi.org/10.3390/plants10050843 |
_version_ | 1783696767075745792 |
---|---|
author | Yang, Cunchun Zou, Zhongwei Fernando, Wannakuwattewaduge Gerard Dilantha |
author_facet | Yang, Cunchun Zou, Zhongwei Fernando, Wannakuwattewaduge Gerard Dilantha |
author_sort | Yang, Cunchun |
collection | PubMed |
description | Temperature is considered one of the crucial environmental elements in plant pathological interactions, and previous studies have indicated that there is a relationship between temperature change and host–pathogen interactions. The objective of this research is to investigate the link between temperature and the incompatible interactions of the host and pathogen. In this study, two Leptosphaeria maculans isolates (HCRT75 8-1 and HCRT77 7-2) and two Brassica napus genotypes (Surpass400 and 01-23-2-1) were selected. The selected B. napus genotypes displayed intermediate and resistant phenotypes. The inoculated seedlings were tested under three temperature conditions: 16 °C/10 °C, 22 °C/16 °C and 28 °C/22 °C (day/night: 16 h/8 h). Lesion measurements demonstrated that the necrotic lesions from the 28 °C/22 °C treatment were enlarged compared with the other two temperature treatments (i.e., 16 °C/10 °C and 22 °C/16 °C). The results of expression analysis indicated that the three temperature treatments displayed distinct differences in two marker genes (PATHOGENESIS–RELATED (PR) 1 and 2) for plant defense and one temperature-sensitive gene BONZAI 1 (BON1). Additionally, seven dpi at 22 °C/16 °C appeared to be the optimal pre-condition for the induction of PR1 and 2. These findings suggest that B. napus responds to temperature changes when infected with L. maculans. |
format | Online Article Text |
id | pubmed-8143495 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81434952021-05-25 The Effect of Temperature on the Hypersensitive Response (HR) in the Brassica napus–Leptosphaeria maculans Pathosystem Yang, Cunchun Zou, Zhongwei Fernando, Wannakuwattewaduge Gerard Dilantha Plants (Basel) Article Temperature is considered one of the crucial environmental elements in plant pathological interactions, and previous studies have indicated that there is a relationship between temperature change and host–pathogen interactions. The objective of this research is to investigate the link between temperature and the incompatible interactions of the host and pathogen. In this study, two Leptosphaeria maculans isolates (HCRT75 8-1 and HCRT77 7-2) and two Brassica napus genotypes (Surpass400 and 01-23-2-1) were selected. The selected B. napus genotypes displayed intermediate and resistant phenotypes. The inoculated seedlings were tested under three temperature conditions: 16 °C/10 °C, 22 °C/16 °C and 28 °C/22 °C (day/night: 16 h/8 h). Lesion measurements demonstrated that the necrotic lesions from the 28 °C/22 °C treatment were enlarged compared with the other two temperature treatments (i.e., 16 °C/10 °C and 22 °C/16 °C). The results of expression analysis indicated that the three temperature treatments displayed distinct differences in two marker genes (PATHOGENESIS–RELATED (PR) 1 and 2) for plant defense and one temperature-sensitive gene BONZAI 1 (BON1). Additionally, seven dpi at 22 °C/16 °C appeared to be the optimal pre-condition for the induction of PR1 and 2. These findings suggest that B. napus responds to temperature changes when infected with L. maculans. MDPI 2021-04-22 /pmc/articles/PMC8143495/ /pubmed/33922044 http://dx.doi.org/10.3390/plants10050843 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yang, Cunchun Zou, Zhongwei Fernando, Wannakuwattewaduge Gerard Dilantha The Effect of Temperature on the Hypersensitive Response (HR) in the Brassica napus–Leptosphaeria maculans Pathosystem |
title | The Effect of Temperature on the Hypersensitive Response (HR) in the Brassica napus–Leptosphaeria maculans Pathosystem |
title_full | The Effect of Temperature on the Hypersensitive Response (HR) in the Brassica napus–Leptosphaeria maculans Pathosystem |
title_fullStr | The Effect of Temperature on the Hypersensitive Response (HR) in the Brassica napus–Leptosphaeria maculans Pathosystem |
title_full_unstemmed | The Effect of Temperature on the Hypersensitive Response (HR) in the Brassica napus–Leptosphaeria maculans Pathosystem |
title_short | The Effect of Temperature on the Hypersensitive Response (HR) in the Brassica napus–Leptosphaeria maculans Pathosystem |
title_sort | effect of temperature on the hypersensitive response (hr) in the brassica napus–leptosphaeria maculans pathosystem |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8143495/ https://www.ncbi.nlm.nih.gov/pubmed/33922044 http://dx.doi.org/10.3390/plants10050843 |
work_keys_str_mv | AT yangcunchun theeffectoftemperatureonthehypersensitiveresponsehrinthebrassicanapusleptosphaeriamaculanspathosystem AT zouzhongwei theeffectoftemperatureonthehypersensitiveresponsehrinthebrassicanapusleptosphaeriamaculanspathosystem AT fernandowannakuwattewadugegerarddilantha theeffectoftemperatureonthehypersensitiveresponsehrinthebrassicanapusleptosphaeriamaculanspathosystem AT yangcunchun effectoftemperatureonthehypersensitiveresponsehrinthebrassicanapusleptosphaeriamaculanspathosystem AT zouzhongwei effectoftemperatureonthehypersensitiveresponsehrinthebrassicanapusleptosphaeriamaculanspathosystem AT fernandowannakuwattewadugegerarddilantha effectoftemperatureonthehypersensitiveresponsehrinthebrassicanapusleptosphaeriamaculanspathosystem |