Cargando…

Xinmai 'an extract enhances the efficacy of sildenafil in the treatment of pulmonary arterial hypertension via inhibiting MAPK signalling pathway

CONTEXT: Xinmai 'an tablet has been used to improve myocardial blood supply. Recently, some compounds from its formula have shown that they can treat pulmonary arterial hypertension (PAH). OBJECTIVE: This study investigates the effects of Xinmai 'an extract (XMA) on PAH and further tests t...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Yaolu, Sun, Yabin, Zhang, Shichang, Li, Chuyuan, Zhao, Yiwei, Zhao, Boxin, Li, Guofeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8143608/
https://www.ncbi.nlm.nih.gov/pubmed/34010580
http://dx.doi.org/10.1080/13880209.2021.1917629
Descripción
Sumario:CONTEXT: Xinmai 'an tablet has been used to improve myocardial blood supply. Recently, some compounds from its formula have shown that they can treat pulmonary arterial hypertension (PAH). OBJECTIVE: This study investigates the effects of Xinmai 'an extract (XMA) on PAH and further tests the co-therapeutic enhancement with sildenafil (SIL). MATERIALS AND METHODS: Pulmonary artery smooth muscle cells were subjected to stimulation with SIL (12.5 μM) and XMA (250 μg/mL) for 48 h. Sprague–Dawley rats were randomly grouped into eight groups (n = 8 per group): (I) control group received saline; (II) MCT group received MCT (60 mg/kg); (III) SIL-Low group received MCT + SIL at 10 mg/kg/day; (IV) SIL-high group received MCT + SIL at 30 mg/kg/day; (V) XMA-High group received MCT + XMA at 251.6 mg/kg/day; (VI) SIL (Low)+XMA (Low) group received SIL (10 mg/kg) + XMA at 62.9 mg/kg/day; (VII) SIL (Low)+XMA (Medium) group received SIL (10 mg/kg) + XMA at 125.8 mg/kg/day; (VIII) SIL (Low)+XMA (High) group received SIL (10 mg/kg) + XMA at 251.6 mg/kg/day. Both XMA and SIL were given by gavage and were maintained daily for 2 weeks. RESULTS: XMA could improve SIL’s efficacy in the treatment of PAH by decreasing cell viability more effectively at non-cytotoxic concentrations (250 μg/mL) and reducing Right Ventricular Systolic Pressure (RVSP) in PAH rat. Potential mechanisms might at least in part be through activating the MAPK signalling pathway. DISCUSSION AND CONCLUSIONS: The combination of XMA and SIL can improve the efficacy of pulmonary hypertension and reduce the dosage of SIL.