Cargando…
LCC-Net: A Lightweight Cross-Consistency Network for Semisupervised Cardiac MR Image Segmentation
Semantic segmentation plays a crucial role in cardiac magnetic resonance (MR) image analysis. Although supervised deep learning methods have made significant performance improvements, they highly rely on a large amount of pixel-wise annotated data, which are often unavailable in clinical practices....
Autores principales: | Song, Lai, Yi, Jiajin, Peng, Jialin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8143880/ https://www.ncbi.nlm.nih.gov/pubmed/34055042 http://dx.doi.org/10.1155/2021/9960199 |
Ejemplares similares
-
Semisupervised white matter hyperintensities segmentation on MRI
por: Huang, Fan, et al.
Publicado: (2022) -
Semisupervised Seizure Prediction in Scalp EEG Using Consistency Regularization
por: Liang, Deng, et al.
Publicado: (2022) -
Semisupervised Semantic Segmentation with Mutual Correction Learning
por: Xiao, Yifan, et al.
Publicado: (2022) -
Weakly- and Semisupervised Probabilistic Segmentation and Quantification of Reverberation Artifacts
por: Hung, Alex Ling Yu, et al.
Publicado: (2022) -
Spectral Normalized CycleGAN with Application in Semisupervised Semantic Segmentation of Sonar Images
por: Zhang, Zhisheng, et al.
Publicado: (2022)