Cargando…
Precision exercise medicine: predicting unfavourable status and development in the 20-m shuttle run test performance in adolescence with machine learning
OBJECTIVES: To assess the ability to predict individual unfavourable future status and development in the 20m shuttle run test (20MSRT) during adolescence with machine learning (random forest (RF) classifier). METHODS: Data from a 2-year observational study (2013‒2015, 12.4±1.3 years, n=633, 50% gir...
Autores principales: | Joensuu, Laura, Rautiainen, Ilkka, Äyrämö, Sami, Syväoja, Heidi J, Kauppi, Jukka-Pekka, Kujala, Urho M, Tammelin, Tuija H |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8144034/ https://www.ncbi.nlm.nih.gov/pubmed/34104475 http://dx.doi.org/10.1136/bmjsem-2021-001053 |
Ejemplares similares
-
Predicting ACL Injury Using Machine Learning on Data From an
Extensive Screening Test Battery of 880 Female Elite Athletes
por: Jauhiainen, Susanne, et al.
Publicado: (2022) -
The Longitudinal Associations of Fitness and Motor Skills with Academic Achievement
por: SYVÄOJA, HEIDI J., et al.
Publicado: (2019) -
The Associations of Objectively Measured Physical Activity and Sedentary Time with Cognitive Functions in School-Aged Children
por: Syväoja, Heidi J., et al.
Publicado: (2014) -
Changes in physical activity and sedentary time during adolescence: Gender differences during weekdays and weekend days
por: Kallio, Jouni, et al.
Publicado: (2020) -
Longitudinal associations of physical activity and pubertal development with academic achievement in adolescents
por: Haapala, Eero A., et al.
Publicado: (2020)