Cargando…

Computational Characterization of Astrophysical Species: The Case of Noble Gas Hydride Cations

Theoretical–computational studies together with recent astronomical observations have shown that under extreme conditions in the interstellar medium (ISM), complexes of noble gases may be formed. Such observations have generated a wide range of possibilities. In order to identify new species contain...

Descripción completa

Detalles Bibliográficos
Autores principales: Montes de Oca-Estévez, María Judit, Prosmiti, Rita
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8144312/
https://www.ncbi.nlm.nih.gov/pubmed/34046396
http://dx.doi.org/10.3389/fchem.2021.664693
Descripción
Sumario:Theoretical–computational studies together with recent astronomical observations have shown that under extreme conditions in the interstellar medium (ISM), complexes of noble gases may be formed. Such observations have generated a wide range of possibilities. In order to identify new species containing such atoms, the present study gathers spectroscopic data for noble gas hydride cations, NgH(+) (Ng = He, Ne, Ar) from high-level ab initio quantum chemistry computations, aiming to contribute in understanding the chemical bonding and electron sharing in these systems. The interaction potentials are obtained from CCSD(T)/CBS and MRCI+Q calculations using large basis sets, and then employed to compute vibrational levels and molecular spectroscopic constants for all known stable isotopologues of ground state NgH(+) cations. Comparisons with previously reported values available are discussed, indicating that the present data could serve as a benchmark for future studies on these systems and on higher-order cationic noble gas hydrides of astrophysical interest.