Cargando…

Dynamic fingerprint of fractionalized excitations in single-crystalline Cu(3)Zn(OH)(6)FBr

Beyond the absence of long-range magnetic orders, the most prominent feature of the elusive quantum spin liquid (QSL) state is the existence of fractionalized spin excitations, i.e., spinons. When the system orders, the spin-wave excitation appears as the bound state of the spinon-antispinon pair. A...

Descripción completa

Detalles Bibliográficos
Autores principales: Fu, Ying, Lin, Miao-Ling, Wang, Le, Liu, Qiye, Huang, Lianglong, Jiang, Wenrui, Hao, Zhanyang, Liu, Cai, Zhang, Hu, Shi, Xingqiang, Zhang, Jun, Dai, Junfeng, Yu, Dapeng, Ye, Fei, Lee, Patrick A., Tan, Ping-Heng, Mei, Jia-Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8144382/
https://www.ncbi.nlm.nih.gov/pubmed/34031422
http://dx.doi.org/10.1038/s41467-021-23381-9
Descripción
Sumario:Beyond the absence of long-range magnetic orders, the most prominent feature of the elusive quantum spin liquid (QSL) state is the existence of fractionalized spin excitations, i.e., spinons. When the system orders, the spin-wave excitation appears as the bound state of the spinon-antispinon pair. Although scarcely reported, a direct comparison between similar compounds illustrates the evolution from spinon to magnon. Here, we perform the Raman scattering on single crystals of two quantum kagome antiferromagnets, of which one is the kagome QSL candidate Cu(3)Zn(OH)(6)FBr, and another is an antiferromagnetically ordered compound EuCu(3)(OH)(6)Cl(3). In Cu(3)Zn(OH)(6)FBr, we identify a unique one spinon-antispinon pair component in the E(2g) magnetic Raman continuum, providing strong evidence for deconfined spinon excitations. In contrast, a sharp magnon peak emerges from the one-pair spinon continuum in the E(g) magnetic Raman response once EuCu(3)(OH)(6)Cl(3) undergoes the antiferromagnetic order transition. From the comparative Raman studies, we can regard the magnon mode as the spinon-antispinon bound state, and the spinon confinement drives the magnetic ordering.