Cargando…

Predicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning

Commonly used for Parkinson’s disease (PD), deep brain stimulation (DBS) produces marked clinical benefits when optimized. However, assessing the large number of possible stimulation settings (i.e., programming) requires numerous clinic visits. Here, we examine whether functional magnetic resonance...

Descripción completa

Detalles Bibliográficos
Autores principales: Boutet, Alexandre, Madhavan, Radhika, Elias, Gavin J. B., Joel, Suresh E., Gramer, Robert, Ranjan, Manish, Paramanandam, Vijayashankar, Xu, David, Germann, Jurgen, Loh, Aaron, Kalia, Suneil K., Hodaie, Mojgan, Li, Bryan, Prasad, Sreeram, Coblentz, Ailish, Munhoz, Renato P., Ashe, Jeffrey, Kucharczyk, Walter, Fasano, Alfonso, Lozano, Andres M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8144408/
https://www.ncbi.nlm.nih.gov/pubmed/34031407
http://dx.doi.org/10.1038/s41467-021-23311-9
_version_ 1783696950427648000
author Boutet, Alexandre
Madhavan, Radhika
Elias, Gavin J. B.
Joel, Suresh E.
Gramer, Robert
Ranjan, Manish
Paramanandam, Vijayashankar
Xu, David
Germann, Jurgen
Loh, Aaron
Kalia, Suneil K.
Hodaie, Mojgan
Li, Bryan
Prasad, Sreeram
Coblentz, Ailish
Munhoz, Renato P.
Ashe, Jeffrey
Kucharczyk, Walter
Fasano, Alfonso
Lozano, Andres M.
author_facet Boutet, Alexandre
Madhavan, Radhika
Elias, Gavin J. B.
Joel, Suresh E.
Gramer, Robert
Ranjan, Manish
Paramanandam, Vijayashankar
Xu, David
Germann, Jurgen
Loh, Aaron
Kalia, Suneil K.
Hodaie, Mojgan
Li, Bryan
Prasad, Sreeram
Coblentz, Ailish
Munhoz, Renato P.
Ashe, Jeffrey
Kucharczyk, Walter
Fasano, Alfonso
Lozano, Andres M.
author_sort Boutet, Alexandre
collection PubMed
description Commonly used for Parkinson’s disease (PD), deep brain stimulation (DBS) produces marked clinical benefits when optimized. However, assessing the large number of possible stimulation settings (i.e., programming) requires numerous clinic visits. Here, we examine whether functional magnetic resonance imaging (fMRI) can be used to predict optimal stimulation settings for individual patients. We analyze 3 T fMRI data prospectively acquired as part of an observational trial in 67 PD patients using optimal and non-optimal stimulation settings. Clinically optimal stimulation produces a characteristic fMRI brain response pattern marked by preferential engagement of the motor circuit. Then, we build a machine learning model predicting optimal vs. non-optimal settings using the fMRI patterns of 39 PD patients with a priori clinically optimized DBS (88% accuracy). The model predicts optimal stimulation settings in unseen datasets: a priori clinically optimized and stimulation-naïve PD patients. We propose that fMRI brain responses to DBS stimulation in PD patients could represent an objective biomarker of clinical response. Upon further validation with additional studies, these findings may open the door to functional imaging-assisted DBS programming.
format Online
Article
Text
id pubmed-8144408
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-81444082021-06-07 Predicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning Boutet, Alexandre Madhavan, Radhika Elias, Gavin J. B. Joel, Suresh E. Gramer, Robert Ranjan, Manish Paramanandam, Vijayashankar Xu, David Germann, Jurgen Loh, Aaron Kalia, Suneil K. Hodaie, Mojgan Li, Bryan Prasad, Sreeram Coblentz, Ailish Munhoz, Renato P. Ashe, Jeffrey Kucharczyk, Walter Fasano, Alfonso Lozano, Andres M. Nat Commun Article Commonly used for Parkinson’s disease (PD), deep brain stimulation (DBS) produces marked clinical benefits when optimized. However, assessing the large number of possible stimulation settings (i.e., programming) requires numerous clinic visits. Here, we examine whether functional magnetic resonance imaging (fMRI) can be used to predict optimal stimulation settings for individual patients. We analyze 3 T fMRI data prospectively acquired as part of an observational trial in 67 PD patients using optimal and non-optimal stimulation settings. Clinically optimal stimulation produces a characteristic fMRI brain response pattern marked by preferential engagement of the motor circuit. Then, we build a machine learning model predicting optimal vs. non-optimal settings using the fMRI patterns of 39 PD patients with a priori clinically optimized DBS (88% accuracy). The model predicts optimal stimulation settings in unseen datasets: a priori clinically optimized and stimulation-naïve PD patients. We propose that fMRI brain responses to DBS stimulation in PD patients could represent an objective biomarker of clinical response. Upon further validation with additional studies, these findings may open the door to functional imaging-assisted DBS programming. Nature Publishing Group UK 2021-05-24 /pmc/articles/PMC8144408/ /pubmed/34031407 http://dx.doi.org/10.1038/s41467-021-23311-9 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Boutet, Alexandre
Madhavan, Radhika
Elias, Gavin J. B.
Joel, Suresh E.
Gramer, Robert
Ranjan, Manish
Paramanandam, Vijayashankar
Xu, David
Germann, Jurgen
Loh, Aaron
Kalia, Suneil K.
Hodaie, Mojgan
Li, Bryan
Prasad, Sreeram
Coblentz, Ailish
Munhoz, Renato P.
Ashe, Jeffrey
Kucharczyk, Walter
Fasano, Alfonso
Lozano, Andres M.
Predicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning
title Predicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning
title_full Predicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning
title_fullStr Predicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning
title_full_unstemmed Predicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning
title_short Predicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning
title_sort predicting optimal deep brain stimulation parameters for parkinson’s disease using functional mri and machine learning
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8144408/
https://www.ncbi.nlm.nih.gov/pubmed/34031407
http://dx.doi.org/10.1038/s41467-021-23311-9
work_keys_str_mv AT boutetalexandre predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning
AT madhavanradhika predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning
AT eliasgavinjb predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning
AT joelsureshe predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning
AT gramerrobert predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning
AT ranjanmanish predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning
AT paramanandamvijayashankar predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning
AT xudavid predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning
AT germannjurgen predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning
AT lohaaron predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning
AT kaliasuneilk predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning
AT hodaiemojgan predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning
AT libryan predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning
AT prasadsreeram predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning
AT coblentzailish predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning
AT munhozrenatop predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning
AT ashejeffrey predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning
AT kucharczykwalter predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning
AT fasanoalfonso predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning
AT lozanoandresm predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning