Cargando…
Predicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning
Commonly used for Parkinson’s disease (PD), deep brain stimulation (DBS) produces marked clinical benefits when optimized. However, assessing the large number of possible stimulation settings (i.e., programming) requires numerous clinic visits. Here, we examine whether functional magnetic resonance...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8144408/ https://www.ncbi.nlm.nih.gov/pubmed/34031407 http://dx.doi.org/10.1038/s41467-021-23311-9 |
_version_ | 1783696950427648000 |
---|---|
author | Boutet, Alexandre Madhavan, Radhika Elias, Gavin J. B. Joel, Suresh E. Gramer, Robert Ranjan, Manish Paramanandam, Vijayashankar Xu, David Germann, Jurgen Loh, Aaron Kalia, Suneil K. Hodaie, Mojgan Li, Bryan Prasad, Sreeram Coblentz, Ailish Munhoz, Renato P. Ashe, Jeffrey Kucharczyk, Walter Fasano, Alfonso Lozano, Andres M. |
author_facet | Boutet, Alexandre Madhavan, Radhika Elias, Gavin J. B. Joel, Suresh E. Gramer, Robert Ranjan, Manish Paramanandam, Vijayashankar Xu, David Germann, Jurgen Loh, Aaron Kalia, Suneil K. Hodaie, Mojgan Li, Bryan Prasad, Sreeram Coblentz, Ailish Munhoz, Renato P. Ashe, Jeffrey Kucharczyk, Walter Fasano, Alfonso Lozano, Andres M. |
author_sort | Boutet, Alexandre |
collection | PubMed |
description | Commonly used for Parkinson’s disease (PD), deep brain stimulation (DBS) produces marked clinical benefits when optimized. However, assessing the large number of possible stimulation settings (i.e., programming) requires numerous clinic visits. Here, we examine whether functional magnetic resonance imaging (fMRI) can be used to predict optimal stimulation settings for individual patients. We analyze 3 T fMRI data prospectively acquired as part of an observational trial in 67 PD patients using optimal and non-optimal stimulation settings. Clinically optimal stimulation produces a characteristic fMRI brain response pattern marked by preferential engagement of the motor circuit. Then, we build a machine learning model predicting optimal vs. non-optimal settings using the fMRI patterns of 39 PD patients with a priori clinically optimized DBS (88% accuracy). The model predicts optimal stimulation settings in unseen datasets: a priori clinically optimized and stimulation-naïve PD patients. We propose that fMRI brain responses to DBS stimulation in PD patients could represent an objective biomarker of clinical response. Upon further validation with additional studies, these findings may open the door to functional imaging-assisted DBS programming. |
format | Online Article Text |
id | pubmed-8144408 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-81444082021-06-07 Predicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning Boutet, Alexandre Madhavan, Radhika Elias, Gavin J. B. Joel, Suresh E. Gramer, Robert Ranjan, Manish Paramanandam, Vijayashankar Xu, David Germann, Jurgen Loh, Aaron Kalia, Suneil K. Hodaie, Mojgan Li, Bryan Prasad, Sreeram Coblentz, Ailish Munhoz, Renato P. Ashe, Jeffrey Kucharczyk, Walter Fasano, Alfonso Lozano, Andres M. Nat Commun Article Commonly used for Parkinson’s disease (PD), deep brain stimulation (DBS) produces marked clinical benefits when optimized. However, assessing the large number of possible stimulation settings (i.e., programming) requires numerous clinic visits. Here, we examine whether functional magnetic resonance imaging (fMRI) can be used to predict optimal stimulation settings for individual patients. We analyze 3 T fMRI data prospectively acquired as part of an observational trial in 67 PD patients using optimal and non-optimal stimulation settings. Clinically optimal stimulation produces a characteristic fMRI brain response pattern marked by preferential engagement of the motor circuit. Then, we build a machine learning model predicting optimal vs. non-optimal settings using the fMRI patterns of 39 PD patients with a priori clinically optimized DBS (88% accuracy). The model predicts optimal stimulation settings in unseen datasets: a priori clinically optimized and stimulation-naïve PD patients. We propose that fMRI brain responses to DBS stimulation in PD patients could represent an objective biomarker of clinical response. Upon further validation with additional studies, these findings may open the door to functional imaging-assisted DBS programming. Nature Publishing Group UK 2021-05-24 /pmc/articles/PMC8144408/ /pubmed/34031407 http://dx.doi.org/10.1038/s41467-021-23311-9 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Boutet, Alexandre Madhavan, Radhika Elias, Gavin J. B. Joel, Suresh E. Gramer, Robert Ranjan, Manish Paramanandam, Vijayashankar Xu, David Germann, Jurgen Loh, Aaron Kalia, Suneil K. Hodaie, Mojgan Li, Bryan Prasad, Sreeram Coblentz, Ailish Munhoz, Renato P. Ashe, Jeffrey Kucharczyk, Walter Fasano, Alfonso Lozano, Andres M. Predicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning |
title | Predicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning |
title_full | Predicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning |
title_fullStr | Predicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning |
title_full_unstemmed | Predicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning |
title_short | Predicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning |
title_sort | predicting optimal deep brain stimulation parameters for parkinson’s disease using functional mri and machine learning |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8144408/ https://www.ncbi.nlm.nih.gov/pubmed/34031407 http://dx.doi.org/10.1038/s41467-021-23311-9 |
work_keys_str_mv | AT boutetalexandre predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning AT madhavanradhika predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning AT eliasgavinjb predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning AT joelsureshe predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning AT gramerrobert predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning AT ranjanmanish predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning AT paramanandamvijayashankar predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning AT xudavid predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning AT germannjurgen predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning AT lohaaron predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning AT kaliasuneilk predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning AT hodaiemojgan predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning AT libryan predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning AT prasadsreeram predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning AT coblentzailish predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning AT munhozrenatop predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning AT ashejeffrey predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning AT kucharczykwalter predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning AT fasanoalfonso predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning AT lozanoandresm predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning |