Cargando…
A three-branch 3D convolutional neural network for EEG-based different hand movement stages classification
Motor Imagery is a classical method of Brain Computer Interaction, in which electroencephalogram (EEG) signal features evoked by the imaginary body movements are recognized, and relevant information is extracted. Recently, various deep learning methods are being focused on finding an easy-to-use EEG...
Autores principales: | Liu, Tianjun, Yang, Deling |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8144431/ https://www.ncbi.nlm.nih.gov/pubmed/34031436 http://dx.doi.org/10.1038/s41598-021-89414-x |
Ejemplares similares
-
A Densely Connected Multi-Branch 3D Convolutional Neural Network for Motor Imagery EEG Decoding
por: Liu, Tianjun, et al.
Publicado: (2021) -
A Multi-Branch Convolutional Neural Network with Squeeze-and-Excitation Attention Blocks for EEG-Based Motor Imagery Signals Classification
por: Altuwaijri, Ghadir Ali, et al.
Publicado: (2022) -
Deep Learning with Convolutional Neural Networks Applied to Electromyography Data: A Resource for the Classification of Movements for Prosthetic Hands
por: Atzori, Manfredo, et al.
Publicado: (2016) -
Deep Convolutional Neural Network-Based Epileptic Electroencephalogram (EEG) Signal Classification
por: Gao, Yunyuan, et al.
Publicado: (2020) -
Multi-Branch Convolutional Neural Network for Automatic Sleep Stage Classification with Embedded Stage Refinement and Residual Attention Channel Fusion
por: Zhu, Tianqi, et al.
Publicado: (2020)