Cargando…
Optimising use of 4D-CT phase information for radiomics analysis in lung cancer patients treated with stereotactic body radiotherapy
Purpose. 4D-CT is routine imaging for lung cancer patients treated with stereotactic body radiotherapy. No studies have investigated optimal 4D phase selection for radiomics. We aim to determine how phase data should be used to identify prognostic biomarkers for distant failure, and test whether sta...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOP Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8144744/ https://www.ncbi.nlm.nih.gov/pubmed/33882470 http://dx.doi.org/10.1088/1361-6560/abfa34 |
_version_ | 1783697023929679872 |
---|---|
author | Davey, Angela van Herk, Marcel Faivre-Finn, Corinne Brown, Sean McWilliam, Alan |
author_facet | Davey, Angela van Herk, Marcel Faivre-Finn, Corinne Brown, Sean McWilliam, Alan |
author_sort | Davey, Angela |
collection | PubMed |
description | Purpose. 4D-CT is routine imaging for lung cancer patients treated with stereotactic body radiotherapy. No studies have investigated optimal 4D phase selection for radiomics. We aim to determine how phase data should be used to identify prognostic biomarkers for distant failure, and test whether stability assessment is required. A phase selection approach will be developed to aid studies with different 4D protocols and account for patient differences. Methods. 186 features were extracted from the tumour and peritumour on all phases for 258 patients. Feature values were selected from phase features using four methods: (A) mean across phases, (B) median across phases, (C) 50% phase, and (D) the most stable phase (closest in value to two neighbours), coined personalised selection. Four levels of stability assessment were also analysed, with inclusion of: (1) all features, (2) stable features across all phases, (3) stable features across phase and neighbour phases, and (4) features averaged over neighbour phases. Clinical-radiomics models were built for twelve combinations of feature type and assessment method. Model performance was assessed by concordance index (c-index) and fraction of new information from radiomic features. Results. The most stable phase spanned the whole range but was most often near exhale. All radiomic signatures provided new information for distant failure prediction. The personalised model had the highest c-index (0.77), and 58% of new information was provided by radiomic features when no stability assessment was performed. Conclusion. The most stable phase varies per-patient and selecting this improves model performance compared to standard methods. We advise the single most stable phase should be determined by minimising feature differences to neighbour phases. Stability assessment over all phases decreases performance by excessively removing features. Instead, averaging of neighbour phases should be used when stability is of concern. The models suggest that higher peritumoural intensity predicts distant failure. |
format | Online Article Text |
id | pubmed-8144744 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | IOP Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-81447442021-05-26 Optimising use of 4D-CT phase information for radiomics analysis in lung cancer patients treated with stereotactic body radiotherapy Davey, Angela van Herk, Marcel Faivre-Finn, Corinne Brown, Sean McWilliam, Alan Phys Med Biol Paper Purpose. 4D-CT is routine imaging for lung cancer patients treated with stereotactic body radiotherapy. No studies have investigated optimal 4D phase selection for radiomics. We aim to determine how phase data should be used to identify prognostic biomarkers for distant failure, and test whether stability assessment is required. A phase selection approach will be developed to aid studies with different 4D protocols and account for patient differences. Methods. 186 features were extracted from the tumour and peritumour on all phases for 258 patients. Feature values were selected from phase features using four methods: (A) mean across phases, (B) median across phases, (C) 50% phase, and (D) the most stable phase (closest in value to two neighbours), coined personalised selection. Four levels of stability assessment were also analysed, with inclusion of: (1) all features, (2) stable features across all phases, (3) stable features across phase and neighbour phases, and (4) features averaged over neighbour phases. Clinical-radiomics models were built for twelve combinations of feature type and assessment method. Model performance was assessed by concordance index (c-index) and fraction of new information from radiomic features. Results. The most stable phase spanned the whole range but was most often near exhale. All radiomic signatures provided new information for distant failure prediction. The personalised model had the highest c-index (0.77), and 58% of new information was provided by radiomic features when no stability assessment was performed. Conclusion. The most stable phase varies per-patient and selecting this improves model performance compared to standard methods. We advise the single most stable phase should be determined by minimising feature differences to neighbour phases. Stability assessment over all phases decreases performance by excessively removing features. Instead, averaging of neighbour phases should be used when stability is of concern. The models suggest that higher peritumoural intensity predicts distant failure. IOP Publishing 2021-06-07 2021-05-24 /pmc/articles/PMC8144744/ /pubmed/33882470 http://dx.doi.org/10.1088/1361-6560/abfa34 Text en © 2021 Institute of Physics and Engineering in Medicine https://creativecommons.org/licenses/by/4.0/Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence (https://creativecommons.org/licenses/by/4.0/) . Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
spellingShingle | Paper Davey, Angela van Herk, Marcel Faivre-Finn, Corinne Brown, Sean McWilliam, Alan Optimising use of 4D-CT phase information for radiomics analysis in lung cancer patients treated with stereotactic body radiotherapy |
title | Optimising use of 4D-CT phase information for radiomics analysis in lung cancer patients treated with stereotactic body radiotherapy |
title_full | Optimising use of 4D-CT phase information for radiomics analysis in lung cancer patients treated with stereotactic body radiotherapy |
title_fullStr | Optimising use of 4D-CT phase information for radiomics analysis in lung cancer patients treated with stereotactic body radiotherapy |
title_full_unstemmed | Optimising use of 4D-CT phase information for radiomics analysis in lung cancer patients treated with stereotactic body radiotherapy |
title_short | Optimising use of 4D-CT phase information for radiomics analysis in lung cancer patients treated with stereotactic body radiotherapy |
title_sort | optimising use of 4d-ct phase information for radiomics analysis in lung cancer patients treated with stereotactic body radiotherapy |
topic | Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8144744/ https://www.ncbi.nlm.nih.gov/pubmed/33882470 http://dx.doi.org/10.1088/1361-6560/abfa34 |
work_keys_str_mv | AT daveyangela optimisinguseof4dctphaseinformationforradiomicsanalysisinlungcancerpatientstreatedwithstereotacticbodyradiotherapy AT vanherkmarcel optimisinguseof4dctphaseinformationforradiomicsanalysisinlungcancerpatientstreatedwithstereotacticbodyradiotherapy AT faivrefinncorinne optimisinguseof4dctphaseinformationforradiomicsanalysisinlungcancerpatientstreatedwithstereotacticbodyradiotherapy AT brownsean optimisinguseof4dctphaseinformationforradiomicsanalysisinlungcancerpatientstreatedwithstereotacticbodyradiotherapy AT mcwilliamalan optimisinguseof4dctphaseinformationforradiomicsanalysisinlungcancerpatientstreatedwithstereotacticbodyradiotherapy |