Cargando…

A dynamic, spatially periodic, micro‐pattern of HES5 underlies neurogenesis in the mouse spinal cord

Ultradian oscillations of HES Transcription Factors (TFs) at the single‐cell level enable cell state transitions. However, the tissue‐level organisation of HES5 dynamics in neurogenesis is unknown. Here, we analyse the expression of HES5 ex vivo in the developing mouse ventral spinal cord and identi...

Descripción completa

Detalles Bibliográficos
Autores principales: Biga, Veronica, Hawley, Joshua, Soto, Ximena, Johns, Emma, Han, Daniel, Bennett, Hayley, Adamson, Antony D, Kursawe, Jochen, Glendinning, Paul, Manning, Cerys S, Papalopulu, Nancy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8144840/
https://www.ncbi.nlm.nih.gov/pubmed/34031978
http://dx.doi.org/10.15252/msb.20209902
_version_ 1783697041662148608
author Biga, Veronica
Hawley, Joshua
Soto, Ximena
Johns, Emma
Han, Daniel
Bennett, Hayley
Adamson, Antony D
Kursawe, Jochen
Glendinning, Paul
Manning, Cerys S
Papalopulu, Nancy
author_facet Biga, Veronica
Hawley, Joshua
Soto, Ximena
Johns, Emma
Han, Daniel
Bennett, Hayley
Adamson, Antony D
Kursawe, Jochen
Glendinning, Paul
Manning, Cerys S
Papalopulu, Nancy
author_sort Biga, Veronica
collection PubMed
description Ultradian oscillations of HES Transcription Factors (TFs) at the single‐cell level enable cell state transitions. However, the tissue‐level organisation of HES5 dynamics in neurogenesis is unknown. Here, we analyse the expression of HES5 ex vivo in the developing mouse ventral spinal cord and identify microclusters of 4–6 cells with positively correlated HES5 level and ultradian dynamics. These microclusters are spatially periodic along the dorsoventral axis and temporally dynamic, alternating between high and low expression with a supra‐ultradian persistence time. We show that Notch signalling is required for temporal dynamics but not the spatial periodicity of HES5. Few Neurogenin 2 cells are observed per cluster, irrespective of high or low state, suggesting that the microcluster organisation of HES5 enables the stable selection of differentiating cells. Computational modelling predicts that different cell coupling strengths underlie the HES5 spatial patterns and rate of differentiation, which is consistent with comparison between the motoneuron and interneuron progenitor domains. Our work shows a previously unrecognised spatiotemporal organisation of neurogenesis, emergent at the tissue level from the synthesis of single‐cell dynamics.
format Online
Article
Text
id pubmed-8144840
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-81448402021-06-03 A dynamic, spatially periodic, micro‐pattern of HES5 underlies neurogenesis in the mouse spinal cord Biga, Veronica Hawley, Joshua Soto, Ximena Johns, Emma Han, Daniel Bennett, Hayley Adamson, Antony D Kursawe, Jochen Glendinning, Paul Manning, Cerys S Papalopulu, Nancy Mol Syst Biol Articles Ultradian oscillations of HES Transcription Factors (TFs) at the single‐cell level enable cell state transitions. However, the tissue‐level organisation of HES5 dynamics in neurogenesis is unknown. Here, we analyse the expression of HES5 ex vivo in the developing mouse ventral spinal cord and identify microclusters of 4–6 cells with positively correlated HES5 level and ultradian dynamics. These microclusters are spatially periodic along the dorsoventral axis and temporally dynamic, alternating between high and low expression with a supra‐ultradian persistence time. We show that Notch signalling is required for temporal dynamics but not the spatial periodicity of HES5. Few Neurogenin 2 cells are observed per cluster, irrespective of high or low state, suggesting that the microcluster organisation of HES5 enables the stable selection of differentiating cells. Computational modelling predicts that different cell coupling strengths underlie the HES5 spatial patterns and rate of differentiation, which is consistent with comparison between the motoneuron and interneuron progenitor domains. Our work shows a previously unrecognised spatiotemporal organisation of neurogenesis, emergent at the tissue level from the synthesis of single‐cell dynamics. John Wiley and Sons Inc. 2021-05-25 /pmc/articles/PMC8144840/ /pubmed/34031978 http://dx.doi.org/10.15252/msb.20209902 Text en © 2021 The Authors. Published under the terms of the CC BY 4.0 license https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Articles
Biga, Veronica
Hawley, Joshua
Soto, Ximena
Johns, Emma
Han, Daniel
Bennett, Hayley
Adamson, Antony D
Kursawe, Jochen
Glendinning, Paul
Manning, Cerys S
Papalopulu, Nancy
A dynamic, spatially periodic, micro‐pattern of HES5 underlies neurogenesis in the mouse spinal cord
title A dynamic, spatially periodic, micro‐pattern of HES5 underlies neurogenesis in the mouse spinal cord
title_full A dynamic, spatially periodic, micro‐pattern of HES5 underlies neurogenesis in the mouse spinal cord
title_fullStr A dynamic, spatially periodic, micro‐pattern of HES5 underlies neurogenesis in the mouse spinal cord
title_full_unstemmed A dynamic, spatially periodic, micro‐pattern of HES5 underlies neurogenesis in the mouse spinal cord
title_short A dynamic, spatially periodic, micro‐pattern of HES5 underlies neurogenesis in the mouse spinal cord
title_sort dynamic, spatially periodic, micro‐pattern of hes5 underlies neurogenesis in the mouse spinal cord
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8144840/
https://www.ncbi.nlm.nih.gov/pubmed/34031978
http://dx.doi.org/10.15252/msb.20209902
work_keys_str_mv AT bigaveronica adynamicspatiallyperiodicmicropatternofhes5underliesneurogenesisinthemousespinalcord
AT hawleyjoshua adynamicspatiallyperiodicmicropatternofhes5underliesneurogenesisinthemousespinalcord
AT sotoximena adynamicspatiallyperiodicmicropatternofhes5underliesneurogenesisinthemousespinalcord
AT johnsemma adynamicspatiallyperiodicmicropatternofhes5underliesneurogenesisinthemousespinalcord
AT handaniel adynamicspatiallyperiodicmicropatternofhes5underliesneurogenesisinthemousespinalcord
AT bennetthayley adynamicspatiallyperiodicmicropatternofhes5underliesneurogenesisinthemousespinalcord
AT adamsonantonyd adynamicspatiallyperiodicmicropatternofhes5underliesneurogenesisinthemousespinalcord
AT kursawejochen adynamicspatiallyperiodicmicropatternofhes5underliesneurogenesisinthemousespinalcord
AT glendinningpaul adynamicspatiallyperiodicmicropatternofhes5underliesneurogenesisinthemousespinalcord
AT manningceryss adynamicspatiallyperiodicmicropatternofhes5underliesneurogenesisinthemousespinalcord
AT papalopulunancy adynamicspatiallyperiodicmicropatternofhes5underliesneurogenesisinthemousespinalcord
AT bigaveronica dynamicspatiallyperiodicmicropatternofhes5underliesneurogenesisinthemousespinalcord
AT hawleyjoshua dynamicspatiallyperiodicmicropatternofhes5underliesneurogenesisinthemousespinalcord
AT sotoximena dynamicspatiallyperiodicmicropatternofhes5underliesneurogenesisinthemousespinalcord
AT johnsemma dynamicspatiallyperiodicmicropatternofhes5underliesneurogenesisinthemousespinalcord
AT handaniel dynamicspatiallyperiodicmicropatternofhes5underliesneurogenesisinthemousespinalcord
AT bennetthayley dynamicspatiallyperiodicmicropatternofhes5underliesneurogenesisinthemousespinalcord
AT adamsonantonyd dynamicspatiallyperiodicmicropatternofhes5underliesneurogenesisinthemousespinalcord
AT kursawejochen dynamicspatiallyperiodicmicropatternofhes5underliesneurogenesisinthemousespinalcord
AT glendinningpaul dynamicspatiallyperiodicmicropatternofhes5underliesneurogenesisinthemousespinalcord
AT manningceryss dynamicspatiallyperiodicmicropatternofhes5underliesneurogenesisinthemousespinalcord
AT papalopulunancy dynamicspatiallyperiodicmicropatternofhes5underliesneurogenesisinthemousespinalcord