Cargando…

N-tert-Butanesulfinyl imines in the asymmetric synthesis of nitrogen-containing heterocycles

The synthesis of nitrogen-containing heterocycles, including natural alkaloids and other compounds presenting different types of biological activities have proved to be successful employing chiral sulfinyl imines derived from tert-butanesulfinamide. These imines are versatile chiral auxiliaries and...

Descripción completa

Detalles Bibliográficos
Autores principales: Mendes, Joseane A, Costa, Paulo R R, Yus, Miguel, Foubelo, Francisco, Buarque, Camilla D
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Beilstein-Institut 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8144919/
https://www.ncbi.nlm.nih.gov/pubmed/34093879
http://dx.doi.org/10.3762/bjoc.17.86
Descripción
Sumario:The synthesis of nitrogen-containing heterocycles, including natural alkaloids and other compounds presenting different types of biological activities have proved to be successful employing chiral sulfinyl imines derived from tert-butanesulfinamide. These imines are versatile chiral auxiliaries and have been extensively used as eletrophiles in a wide range of reactions. The electron-withdrawing sulfinyl group facilitates the nucleophilic addition of organometallic compounds to the iminic carbon with high diastereoisomeric excess and the free amines obtained after an easy removal of the tert-butanesulfinyl group can be transformed into enantioenriched nitrogen-containing heterocycles. The goal of this review is to the highlight enantioselective syntheses of heterocycles involving the use of chiral N-tert-butanesulfinyl imines as reaction intermediates, including the synthesis of several natural products. The synthesis of nitrogen-containing heterocycles in which the nitrogen atom is not provided by the chiral imine will not be considered in this review. The sections are organized according to the size of the heterocycles. The present work will comprehensively cover the most pertinent contributions to this research area from 2012 to 2020. We regret in advance that some contributions are excluded in order to maintain a concise format.