Cargando…
An Improved Similarity-Based Clustering Algorithm for Multi-Database Mining
Clustering algorithms for multi-database mining (MDM) rely on computing [Formula: see text] pairwise similarities between n multiple databases to generate and evaluate [Formula: see text] candidate clusterings in order to select the ideal partitioning that optimizes a predefined goodness measure. Ho...
Autores principales: | Miloudi, Salim, Wang, Yulin, Ding, Wenjia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8144976/ https://www.ncbi.nlm.nih.gov/pubmed/33947081 http://dx.doi.org/10.3390/e23050553 |
Ejemplares similares
-
Cross-Layer Routing for a Mobility Support Protocol Based on Handover Mechanism in Cluster-Based Wireless Sensor Networks with Mobile Sink
por: Zahra, Maamar, et al.
Publicado: (2019) -
Multi-Attribute Fusion Algorithm Based on Improved Evidence Theory and Clustering
por: Wang, Wenqing, et al.
Publicado: (2019) -
Research on Multi-Level Scheduling of Mine Water Reuse Based on Improved Whale Optimization Algorithm
por: Bo, Lei, et al.
Publicado: (2022) -
An Improved Density Peak Clustering Algorithm for Multi-Density Data
por: Yin, Lifeng, et al.
Publicado: (2022) -
Identifying Compound-Target Associations by Combining Bioactivity Profile Similarity Search and Public Databases Mining
por: Cheng, Tiejun, et al.
Publicado: (2011)