Cargando…
A Unified Formulation of k-Means, Fuzzy c-Means and Gaussian Mixture Model by the Kolmogorov–Nagumo Average
Clustering is a major unsupervised learning algorithm and is widely applied in data mining and statistical data analyses. Typical examples include k-means, fuzzy c-means, and Gaussian mixture models, which are categorized into hard, soft, and model-based clusterings, respectively. We propose a new c...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8145026/ https://www.ncbi.nlm.nih.gov/pubmed/33923177 http://dx.doi.org/10.3390/e23050518 |
Sumario: | Clustering is a major unsupervised learning algorithm and is widely applied in data mining and statistical data analyses. Typical examples include k-means, fuzzy c-means, and Gaussian mixture models, which are categorized into hard, soft, and model-based clusterings, respectively. We propose a new clustering, called Pareto clustering, based on the Kolmogorov–Nagumo average, which is defined by a survival function of the Pareto distribution. The proposed algorithm incorporates all the aforementioned clusterings plus maximum-entropy clustering. We introduce a probabilistic framework for the proposed method, in which the underlying distribution to give consistency is discussed. We build the minorize-maximization algorithm to estimate the parameters in Pareto clustering. We compare the performance with existing methods in simulation studies and in benchmark dataset analyses to demonstrate its highly practical utilities. |
---|