Cargando…
A Unified Formulation of k-Means, Fuzzy c-Means and Gaussian Mixture Model by the Kolmogorov–Nagumo Average
Clustering is a major unsupervised learning algorithm and is widely applied in data mining and statistical data analyses. Typical examples include k-means, fuzzy c-means, and Gaussian mixture models, which are categorized into hard, soft, and model-based clusterings, respectively. We propose a new c...
Autores principales: | Komori, Osamu, Eguchi, Shinto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8145026/ https://www.ncbi.nlm.nih.gov/pubmed/33923177 http://dx.doi.org/10.3390/e23050518 |
Ejemplares similares
-
Detecting somatic mutations in genomic sequences by means of Kolmogorov–Arnold analysis
por: Gurzadyan, V. G., et al.
Publicado: (2015) -
Differential privacy fuzzy C-means clustering algorithm based on gaussian kernel function
por: Zhang, Yaling, et al.
Publicado: (2021) -
Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons
por: Baladron, Javier, et al.
Publicado: (2012) -
Clustering models for hospitals in Jakarta using fuzzy c-means and k-means
por: Setiawan, Karli Eka, et al.
Publicado: (2023) -
Outdoor THz fading modeling by means of gaussian and gamma mixture distributions
por: Papasotiriou, Evangelos N., et al.
Publicado: (2023)