Cargando…
Potential Role of Rhizobacteria Isolated from Citrus Rhizosphere for Biological Control of Citrus Dry Root Rot
Citrus trees face threats from several diseases that affect its production, in particular dry root rot (DRR). DRR is a multifactorial disease mainly attributed to Neocosmospora (Fusarium) solani and other several species of Neocosmospora and Fusarium spp. Nowadays, biological control holds a promisi...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8145030/ https://www.ncbi.nlm.nih.gov/pubmed/33926049 http://dx.doi.org/10.3390/plants10050872 |
_version_ | 1783697085102555136 |
---|---|
author | Ezrari, Said Mhidra, Oumayma Radouane, Nabil Tahiri, Abdessalem Polizzi, Giancarlo Lazraq, Abderrahim Lahlali, Rachid |
author_facet | Ezrari, Said Mhidra, Oumayma Radouane, Nabil Tahiri, Abdessalem Polizzi, Giancarlo Lazraq, Abderrahim Lahlali, Rachid |
author_sort | Ezrari, Said |
collection | PubMed |
description | Citrus trees face threats from several diseases that affect its production, in particular dry root rot (DRR). DRR is a multifactorial disease mainly attributed to Neocosmospora (Fusarium) solani and other several species of Neocosmospora and Fusarium spp. Nowadays, biological control holds a promising control strategy that showed its great potential as a reliable eco-friendly method for managing DRR disease. In the present study, antagonist rhizobacteria isolates were screened based on in vitro dual culture bioassay with N. solani. Out of 210 bacterial isolates collected from citrus rhizosphere, twenty isolates were selected and identified to the species level based on the 16S rRNA gene. Molecular identification based on 16S rRNA gene revealed nine species belonging to Bacillus, Stenotrophomonas, and Sphingobacterium genus. In addition, their possible mechanisms involved in biocontrol and plant growth promoting traits were also investigated. Results showed that pectinase, cellulose, and chitinase were produced by eighteen, sixteen, and eight bacterial isolates, respectively. All twenty isolates were able to produce amylase and protease, only four isolates produced hydrogen cyanide, fourteen isolates have solubilized tricalcium phosphate, and ten had the ability to produce indole-3-acetic acid (IAA). Surprisingly, antagonist bacteria differed substantially in their ability to produce antimicrobial substances such as bacillomycin (five isolates), iturin (ten isolates), fengycin (six isolates), surfactin (fourteen isolates), and bacteriocin (subtilosin A (six isolates)). Regarding the PGPR capabilities, an increase in the growth of the bacterial treated canola plants, used as a model plant, was observed. Interestingly, both bacterial isolates Bacillus subtilis K4-4 and GH3-8 appear to be more promising as biocontrol agents, since they completely suppressed the disease in greenhouse trials. Moreover, these antagonist bacteria could be used as bio-fertilizer for sustainable agriculture. |
format | Online Article Text |
id | pubmed-8145030 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81450302021-05-26 Potential Role of Rhizobacteria Isolated from Citrus Rhizosphere for Biological Control of Citrus Dry Root Rot Ezrari, Said Mhidra, Oumayma Radouane, Nabil Tahiri, Abdessalem Polizzi, Giancarlo Lazraq, Abderrahim Lahlali, Rachid Plants (Basel) Article Citrus trees face threats from several diseases that affect its production, in particular dry root rot (DRR). DRR is a multifactorial disease mainly attributed to Neocosmospora (Fusarium) solani and other several species of Neocosmospora and Fusarium spp. Nowadays, biological control holds a promising control strategy that showed its great potential as a reliable eco-friendly method for managing DRR disease. In the present study, antagonist rhizobacteria isolates were screened based on in vitro dual culture bioassay with N. solani. Out of 210 bacterial isolates collected from citrus rhizosphere, twenty isolates were selected and identified to the species level based on the 16S rRNA gene. Molecular identification based on 16S rRNA gene revealed nine species belonging to Bacillus, Stenotrophomonas, and Sphingobacterium genus. In addition, their possible mechanisms involved in biocontrol and plant growth promoting traits were also investigated. Results showed that pectinase, cellulose, and chitinase were produced by eighteen, sixteen, and eight bacterial isolates, respectively. All twenty isolates were able to produce amylase and protease, only four isolates produced hydrogen cyanide, fourteen isolates have solubilized tricalcium phosphate, and ten had the ability to produce indole-3-acetic acid (IAA). Surprisingly, antagonist bacteria differed substantially in their ability to produce antimicrobial substances such as bacillomycin (five isolates), iturin (ten isolates), fengycin (six isolates), surfactin (fourteen isolates), and bacteriocin (subtilosin A (six isolates)). Regarding the PGPR capabilities, an increase in the growth of the bacterial treated canola plants, used as a model plant, was observed. Interestingly, both bacterial isolates Bacillus subtilis K4-4 and GH3-8 appear to be more promising as biocontrol agents, since they completely suppressed the disease in greenhouse trials. Moreover, these antagonist bacteria could be used as bio-fertilizer for sustainable agriculture. MDPI 2021-04-26 /pmc/articles/PMC8145030/ /pubmed/33926049 http://dx.doi.org/10.3390/plants10050872 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ezrari, Said Mhidra, Oumayma Radouane, Nabil Tahiri, Abdessalem Polizzi, Giancarlo Lazraq, Abderrahim Lahlali, Rachid Potential Role of Rhizobacteria Isolated from Citrus Rhizosphere for Biological Control of Citrus Dry Root Rot |
title | Potential Role of Rhizobacteria Isolated from Citrus Rhizosphere for Biological Control of Citrus Dry Root Rot |
title_full | Potential Role of Rhizobacteria Isolated from Citrus Rhizosphere for Biological Control of Citrus Dry Root Rot |
title_fullStr | Potential Role of Rhizobacteria Isolated from Citrus Rhizosphere for Biological Control of Citrus Dry Root Rot |
title_full_unstemmed | Potential Role of Rhizobacteria Isolated from Citrus Rhizosphere for Biological Control of Citrus Dry Root Rot |
title_short | Potential Role of Rhizobacteria Isolated from Citrus Rhizosphere for Biological Control of Citrus Dry Root Rot |
title_sort | potential role of rhizobacteria isolated from citrus rhizosphere for biological control of citrus dry root rot |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8145030/ https://www.ncbi.nlm.nih.gov/pubmed/33926049 http://dx.doi.org/10.3390/plants10050872 |
work_keys_str_mv | AT ezrarisaid potentialroleofrhizobacteriaisolatedfromcitrusrhizosphereforbiologicalcontrolofcitrusdryrootrot AT mhidraoumayma potentialroleofrhizobacteriaisolatedfromcitrusrhizosphereforbiologicalcontrolofcitrusdryrootrot AT radouanenabil potentialroleofrhizobacteriaisolatedfromcitrusrhizosphereforbiologicalcontrolofcitrusdryrootrot AT tahiriabdessalem potentialroleofrhizobacteriaisolatedfromcitrusrhizosphereforbiologicalcontrolofcitrusdryrootrot AT polizzigiancarlo potentialroleofrhizobacteriaisolatedfromcitrusrhizosphereforbiologicalcontrolofcitrusdryrootrot AT lazraqabderrahim potentialroleofrhizobacteriaisolatedfromcitrusrhizosphereforbiologicalcontrolofcitrusdryrootrot AT lahlalirachid potentialroleofrhizobacteriaisolatedfromcitrusrhizosphereforbiologicalcontrolofcitrusdryrootrot |