Cargando…

The Real Need for Regenerative Medicine in the Future of Congenital Heart Disease Treatment

Bioabsorbable materials made from polymeric compounds have been used in many fields of regenerative medicine to promote tissue regeneration. These materials replace autologous tissue and, due to their growth potential, make excellent substitutes for cardiovascular applications in the treatment of co...

Descripción completa

Detalles Bibliográficos
Autores principales: Matsuzaki, Yuichi, Wiet, Matthew G., Boe, Brian A., Shinoka, Toshiharu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8145070/
https://www.ncbi.nlm.nih.gov/pubmed/33925558
http://dx.doi.org/10.3390/biomedicines9050478
Descripción
Sumario:Bioabsorbable materials made from polymeric compounds have been used in many fields of regenerative medicine to promote tissue regeneration. These materials replace autologous tissue and, due to their growth potential, make excellent substitutes for cardiovascular applications in the treatment of congenital heart disease. However, there remains a sizable gap between their theoretical advantages and actual clinical application within pediatric cardiovascular surgery. This review will focus on four areas of regenerative medicine in which bioabsorbable materials have the potential to alleviate the burden where current treatment options have been unable to within the field of pediatric cardiovascular surgery. These four areas include tissue-engineered pulmonary valves, tissue-engineered patches, regenerative medicine options for treatment of pulmonary vein stenosis and tissue-engineered vascular grafts. We will discuss the research and development of biocompatible materials reported to date, the evaluation of materials in vitro, and the results of studies that have progressed to clinical trials.