Cargando…

Cold Plasma Affects Germination and Fungal Community Structure of Buckwheat Seeds

Crop seeds are frequently colonised by fungi from the field or storage places. Some fungi can cause plant diseases or produce mycotoxins, compromising the use of seeds as seeding material, food or feed. We have investigated the effects of cold plasma (CP) on seed germination and diversity of seed-bo...

Descripción completa

Detalles Bibliográficos
Autores principales: Mravlje, Jure, Regvar, Marjana, Starič, Pia, Mozetič, Miran, Vogel-Mikuš, Katarina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8145130/
https://www.ncbi.nlm.nih.gov/pubmed/33922511
http://dx.doi.org/10.3390/plants10050851
Descripción
Sumario:Crop seeds are frequently colonised by fungi from the field or storage places. Some fungi can cause plant diseases or produce mycotoxins, compromising the use of seeds as seeding material, food or feed. We have investigated the effects of cold plasma (CP) on seed germination and diversity of seed-borne fungi in common and Tartary buckwheat. The seeds were treated with CP for 15, 30, 45, 60, 90, and 120 s in a low-pressure radiofrequency system using oxygen as the feed gas. The fungi from the seed surface and fungal endophytes were isolated using potato dextrose agar plates. After identification by molecular methods, the frequency and diversity of fungal strains were compared between CP treated and chemically surface-sterilised (30% of H(2)O(2)) seeds. CP treatments above 60 s negatively affected the germination of both buckwheat species. A significant reduction in fungal frequency and diversity was observed after 90 s and 120 s in common and Tartary buckwheat, respectively. The filamentous fungi of genera Alternaria and Epicoccum proved to be the most resistant to CP. The results of our study indicate that CP treatment used in our study may be applicable in postharvest and food production, but not for further seed sowing.