Cargando…
A Review on Machine Learning Approaches for Network Malicious Behavior Detection in Emerging Technologies
Network anomaly detection systems (NADSs) play a significant role in every network defense system as they detect and prevent malicious activities. Therefore, this paper offers an exhaustive overview of different aspects of anomaly-based network intrusion detection systems (NIDSs). Additionally, cont...
Autores principales: | Rabbani, Mahdi, Wang, Yongli, Khoshkangini, Reza, Jelodar, Hamed, Zhao, Ruxin, Bagheri Baba Ahmadi, Sajjad, Ayobi, Seyedvalyallah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8145138/ https://www.ncbi.nlm.nih.gov/pubmed/33923125 http://dx.doi.org/10.3390/e23050529 |
Ejemplares similares
-
Classification of Malicious URLs Using Machine Learning
por: Abad, Shayan, et al.
Publicado: (2023) -
Detection of Malicious Cloud Bandwidth Consumption in Cloud Computing Using Machine Learning Techniques
por: Veeraiah, Duggineni, et al.
Publicado: (2022) -
A Snapshot-Stacked Ensemble and Optimization Approach for Vehicle Breakdown Prediction
por: Khoshkangini, Reza, et al.
Publicado: (2023) -
Subtle is the sutureless, but malicious it is not
por: Mamdooh, Hazem, et al.
Publicado: (2022) -
Syngress force emerging threat analysis: from mischief to malicious
por: Maynor, David
Publicado: (2006)