Cargando…
Forward and Backward Bellman Equations Improve the Efficiency of the EM Algorithm for DEC-POMDP
Decentralized partially observable Markov decision process (DEC-POMDP) models sequential decision making problems by a team of agents. Since the planning of DEC-POMDP can be interpreted as the maximum likelihood estimation for the latent variable model, DEC-POMDP can be solved by the EM algorithm. H...
Autores principales: | Tottori, Takehiro, Kobayashi, Tetsuya J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8145255/ https://www.ncbi.nlm.nih.gov/pubmed/33947054 http://dx.doi.org/10.3390/e23050551 |
Ejemplares similares
-
Forward-Backward Sweep Method for the System of HJB-FP Equations in Memory-Limited Partially Observable Stochastic Control
por: Tottori, Takehiro, et al.
Publicado: (2023) -
Ergodicity, stabilization, and singular perturbations for Bellman-Isaacs equations
por: Alvarez, Olivier, et al.
Publicado: (2010) -
Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations /
por: Bardi, M. (Martino)
Publicado: (1997) -
Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations
por: Bardi, Martino, et al.
Publicado: (1997) -
A concise introduction to decentralized POMDPs
por: Oliehoek, Frans A, et al.
Publicado: (2016)