Cargando…
Skin Lesion Segmentation and Multiclass Classification Using Deep Learning Features and Improved Moth Flame Optimization
Manual diagnosis of skin cancer is time-consuming and expensive; therefore, it is essential to develop automated diagnostics methods with the ability to classify multiclass skin lesions with greater accuracy. We propose a fully automated approach for multiclass skin lesion segmentation and classific...
Autores principales: | Khan, Muhammad Attique, Sharif, Muhammad, Akram, Tallha, Damaševičius, Robertas, Maskeliūnas, Rytis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8145295/ https://www.ncbi.nlm.nih.gov/pubmed/33947117 http://dx.doi.org/10.3390/diagnostics11050811 |
Ejemplares similares
-
Multi-Modal Brain Tumor Detection Using Deep Neural Network and Multiclass SVM
por: Maqsood, Sarmad, et al.
Publicado: (2022) -
A novel framework for rapid diagnosis of COVID-19 on computed tomography scans
por: Akram, Tallha, et al.
Publicado: (2021) -
Correction to a novel framework for rapid diagnosis of COVID-19 on computed tomography scans
por: Akram, Tallha, et al.
Publicado: (2021) -
SkinNet-INIO: Multiclass Skin Lesion Localization and Classification Using Fusion-Assisted Deep Neural Networks and Improved Nature-Inspired Optimization Algorithm
por: Hussain, Muneezah, et al.
Publicado: (2023) -
Multiclass Skin Lesion Classification Using Hybrid Deep Features Selection and Extreme Learning Machine
por: Afza, Farhat, et al.
Publicado: (2022)