Cargando…
Evaluation of the Antioxidant, Anti-Inflammatory and Cytoprotective Activities of Halophyte Extracts against Mycotoxin Intoxication
Twelve halophyte species belonging to different families, widely represented along French Atlantic shoreline and commonly used in traditional medicine, were screened for protective activities against mycotoxins, in order to set out new promising sources of natural ingredients for feed applications....
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8145414/ https://www.ncbi.nlm.nih.gov/pubmed/33925367 http://dx.doi.org/10.3390/toxins13050312 |
Sumario: | Twelve halophyte species belonging to different families, widely represented along French Atlantic shoreline and commonly used in traditional medicine, were screened for protective activities against mycotoxins, in order to set out new promising sources of natural ingredients for feed applications. Selected halophytic species from diverse natural habitats were examined for their in vitro anti-mycotoxin activities, through viability evaluation of Madin-Darby Bovine Kidney (MDBK) and intestinal porcine enterocyte (IPEC-J2) cell lines. Besides, the in vitro antioxidant activities of plant extracts were assessed (total antioxidant and 2,2-diphenyl-1-picrylhydrazyl (DPPH)-scavenging bioassays). Of the 12 species, Galium arenarium, Convolvulus soldanella and Eryngium campestre exhibited the most protective action on MDBK and IPEC-J2 cells against zearalenone (ZEN) or T2 toxin contamination (restoring about 75% of cell viability at 10 μg·mL(−1)) without inflammation response. They also had strong antioxidant capacities (Inhibitory concentration of 50% (IC(50)) < 100 μg·mL(−1) for DPPH radical and total antioxidant capacity (TAC) of 100 to 200 mg Ascorbic Acid Equivalent (AAE)·g(−1) Dry Weight), suggesting that cell protection against intoxication involves antioxidant action. A bio-guided study showed that fractions of G. arenarium extract protect MDBK cells against T2 or ZEN toxicity and several major compounds like chlorogenic acid and asperuloside could be involved in this protective effect. Overall, our results show that the halophytes G. arenarium, C. soldanella and E. campestre should be considered further as new sources of ingredients for livestock feed with protective action against mycotoxin intoxication. |
---|