Cargando…

Compatibility of Beauveria bassiana and a Plant Secondary Metabolite: A Novel Modeling Approach to Invade Host Defense for Effective Control of Oligonychus afrasiaticus (McGregor) on Date Palms

Oligonychus afrasiaticus (McGregor) is an important pest causing substantial economic losses to date palm fruits (dates). The application of mycopathogens with plant secondary metabolites, which may proceed synergistically is thus essential to augment sustainable management strategy for O. afrasiati...

Descripción completa

Detalles Bibliográficos
Autor principal: Hussain, Abid
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8145493/
https://www.ncbi.nlm.nih.gov/pubmed/33926109
http://dx.doi.org/10.3390/jof7050334
_version_ 1783697187994075136
author Hussain, Abid
author_facet Hussain, Abid
author_sort Hussain, Abid
collection PubMed
description Oligonychus afrasiaticus (McGregor) is an important pest causing substantial economic losses to date palm fruits (dates). The application of mycopathogens with plant secondary metabolites, which may proceed synergistically is thus essential to augment sustainable management strategy for O. afrasiaticus. In this regard, extensive laboratory experimentation involving compatibility, synergism, and host defense was performed to develop stable pest management option. The toxin-pathogen compatibility assay results revealed compatible interaction (biological index = 79–95) of B. bassiana ARSEF 8465 against each tested concentration of commercially available (+)-α-Pinene that provide the opportunity to further explore the time and concentration dependent mortality and defense related enzymatic regulation analysis. The time-mortality response assays that mainly comprised of various proportions of B. bassiana ARSEF 8465 and (+)-α-Pinene revealed that the sole application of B. bassiana ARSEF 8465 (LC(50) = 19.16 mg/mL), and (+)-α-Pinene (3.41 mg/mL) found to be least lethal compared with joint applications (LC(50) ranged from 1.32–7.06 mg/mL). The treatments complied under Scheme IV (80% (+)-α-Pinene: 20% B. bassiana ARSEF 8465 Conidia) led to strong synergistic interaction (joint toxicity = 755). In addition, synergistic interactions greatly induced enzymatic activities of the studied antioxidants (CAT and SOD), and defense-related enzymes (GST and AchE). We concluded that join application of B. bassiana ARSEF 8465 and (+)-α-Pinene is a promising option for controlling Oligonychus afrasiaticus populations.
format Online
Article
Text
id pubmed-8145493
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-81454932021-05-26 Compatibility of Beauveria bassiana and a Plant Secondary Metabolite: A Novel Modeling Approach to Invade Host Defense for Effective Control of Oligonychus afrasiaticus (McGregor) on Date Palms Hussain, Abid J Fungi (Basel) Article Oligonychus afrasiaticus (McGregor) is an important pest causing substantial economic losses to date palm fruits (dates). The application of mycopathogens with plant secondary metabolites, which may proceed synergistically is thus essential to augment sustainable management strategy for O. afrasiaticus. In this regard, extensive laboratory experimentation involving compatibility, synergism, and host defense was performed to develop stable pest management option. The toxin-pathogen compatibility assay results revealed compatible interaction (biological index = 79–95) of B. bassiana ARSEF 8465 against each tested concentration of commercially available (+)-α-Pinene that provide the opportunity to further explore the time and concentration dependent mortality and defense related enzymatic regulation analysis. The time-mortality response assays that mainly comprised of various proportions of B. bassiana ARSEF 8465 and (+)-α-Pinene revealed that the sole application of B. bassiana ARSEF 8465 (LC(50) = 19.16 mg/mL), and (+)-α-Pinene (3.41 mg/mL) found to be least lethal compared with joint applications (LC(50) ranged from 1.32–7.06 mg/mL). The treatments complied under Scheme IV (80% (+)-α-Pinene: 20% B. bassiana ARSEF 8465 Conidia) led to strong synergistic interaction (joint toxicity = 755). In addition, synergistic interactions greatly induced enzymatic activities of the studied antioxidants (CAT and SOD), and defense-related enzymes (GST and AchE). We concluded that join application of B. bassiana ARSEF 8465 and (+)-α-Pinene is a promising option for controlling Oligonychus afrasiaticus populations. MDPI 2021-04-26 /pmc/articles/PMC8145493/ /pubmed/33926109 http://dx.doi.org/10.3390/jof7050334 Text en © 2021 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Hussain, Abid
Compatibility of Beauveria bassiana and a Plant Secondary Metabolite: A Novel Modeling Approach to Invade Host Defense for Effective Control of Oligonychus afrasiaticus (McGregor) on Date Palms
title Compatibility of Beauveria bassiana and a Plant Secondary Metabolite: A Novel Modeling Approach to Invade Host Defense for Effective Control of Oligonychus afrasiaticus (McGregor) on Date Palms
title_full Compatibility of Beauveria bassiana and a Plant Secondary Metabolite: A Novel Modeling Approach to Invade Host Defense for Effective Control of Oligonychus afrasiaticus (McGregor) on Date Palms
title_fullStr Compatibility of Beauveria bassiana and a Plant Secondary Metabolite: A Novel Modeling Approach to Invade Host Defense for Effective Control of Oligonychus afrasiaticus (McGregor) on Date Palms
title_full_unstemmed Compatibility of Beauveria bassiana and a Plant Secondary Metabolite: A Novel Modeling Approach to Invade Host Defense for Effective Control of Oligonychus afrasiaticus (McGregor) on Date Palms
title_short Compatibility of Beauveria bassiana and a Plant Secondary Metabolite: A Novel Modeling Approach to Invade Host Defense for Effective Control of Oligonychus afrasiaticus (McGregor) on Date Palms
title_sort compatibility of beauveria bassiana and a plant secondary metabolite: a novel modeling approach to invade host defense for effective control of oligonychus afrasiaticus (mcgregor) on date palms
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8145493/
https://www.ncbi.nlm.nih.gov/pubmed/33926109
http://dx.doi.org/10.3390/jof7050334
work_keys_str_mv AT hussainabid compatibilityofbeauveriabassianaandaplantsecondarymetaboliteanovelmodelingapproachtoinvadehostdefenseforeffectivecontrolofoligonychusafrasiaticusmcgregorondatepalms