Cargando…
Finite-Sample Bounds on the Accuracy of Plug-In Estimators of Fisher Information
Finite-sample bounds on the accuracy of Bhattacharya’s plug-in estimator for Fisher information are derived. These bounds are further improved by introducing a clipping step that allows for better control over the score function. This leads to superior upper bounds on the rates of convergence, albei...
Autores principales: | Cao, Wei, Dytso, Alex, Fauß, Michael, Poor, H. Vincent |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8145518/ https://www.ncbi.nlm.nih.gov/pubmed/33924955 http://dx.doi.org/10.3390/e23050545 |
Ejemplares similares
-
Improved Information-Theoretic Generalization Bounds for Distributed, Federated, and Iterative Learning †
por: Barnes, Leighton Pate, et al.
Publicado: (2022) -
Amplitude Constrained MIMO Channels: Properties of Optimal Input Distributions and Bounds on the Capacity †
por: Dytso, Alex, et al.
Publicado: (2019) -
Discrete Versions of Jensen–Fisher, Fisher and Bayes–Fisher Information Measures of Finite Mixture Distributions
por: Kharazmi, Omid, et al.
Publicado: (2021) -
The finite state projection based Fisher information matrix approach to estimate information and optimize single-cell experiments
por: Fox, Zachary R, et al.
Publicado: (2019) -
Assessment of Receiver Signal Strength Sensing for Location Estimation Based on Fisher Information
por: Nielsen, John, et al.
Publicado: (2016)