Cargando…

The Microbiome of the Reef Macroalga Sargassum ilicifolium in Singapore

The large canopy-forming macroalga, Sargassum ilicifolium, provides shelter and food for numerous coral reef species, but it can also be detrimental at high abundances where it outcompetes other benthic organisms for light and space. Here, we investigate the microbial communities associated with S....

Descripción completa

Detalles Bibliográficos
Autores principales: Oh, Ren Min, Bollati, Elena, Maithani, Prasha, Huang, Danwei, Wainwright, Benjamin J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8145558/
https://www.ncbi.nlm.nih.gov/pubmed/33922357
http://dx.doi.org/10.3390/microorganisms9050898
Descripción
Sumario:The large canopy-forming macroalga, Sargassum ilicifolium, provides shelter and food for numerous coral reef species, but it can also be detrimental at high abundances where it outcompetes other benthic organisms for light and space. Here, we investigate the microbial communities associated with S. ilicifolium in Singapore, where it is an abundant and important member of coral reef communities. We collected eight complete S. ilicifolium thalli from eight island locations along an approximate 14 km east-to-west transect. Each thallus was dissected into three separate parts: holdfast, vesicles, and leaves. We then characterized the bacterial communities associated with each part via polymerase chain reaction (PCR) amplification of the 16S rRNA gene V4 region. We then inferred predicted metagenome functions using METAGENassist. Despite the comparatively short distances between sample sites, we show significant differences in microbial community composition, with communities further differentiated by part sampled. Holdfast, vesicles and leaves all harbor distinct microbial communities. Functional predictions reveal some separation between holdfast and leaf communities, with higher representation of sulphur cycling taxa in the holdfast and higher representation of nitrogen cycling taxa in the leaves. This study provides valuable baseline data that can be used to monitor microbial change, and helps lay the foundation upon which we can begin to understand the complexities of reef-associated microbial communities and the roles they play in the functioning and diversity of marine ecosystems.