Cargando…
Blood Pressure Regulation Evolved from Basic Homeostatic Components
Blood pressure (BP) is determined by several physiological factors that are regulated by a range of complex neural, endocrine, and paracrine mechanisms. This study examined a collection of 198 human genes related to BP regulation, in the biological processes and functional prisms, as well as gene ex...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8145682/ https://www.ncbi.nlm.nih.gov/pubmed/33923023 http://dx.doi.org/10.3390/biomedicines9050469 |
_version_ | 1783697231770025984 |
---|---|
author | Botzer, Alon Finkelstein, Yoram Unger, Ron |
author_facet | Botzer, Alon Finkelstein, Yoram Unger, Ron |
author_sort | Botzer, Alon |
collection | PubMed |
description | Blood pressure (BP) is determined by several physiological factors that are regulated by a range of complex neural, endocrine, and paracrine mechanisms. This study examined a collection of 198 human genes related to BP regulation, in the biological processes and functional prisms, as well as gene expression in organs and tissues. This was made in conjunction with an orthology analysis performed in 19 target organisms along the phylogenetic tree. We have demonstrated that transport and signaling, as well as homeostasis in general, are the most prevalent biological processes associated with BP gene orthologs across the examined species. We showed that these genes and their orthologs are expressed primarily in the kidney and adrenals of complex organisms (e.g., high order vertebrates) and in the nervous system of low complexity organisms (e.g., flies, nematodes). Furthermore, we have determined that basic functions such as ion transport are ancient and appear in all organisms, while more complex regulatory functions, such as control of extracellular volume emerged in high order organisms. Thus, we conclude that the complex system of BP regulation evolved from simpler components that were utilized to maintain specific homeostatic functions that play key roles in existence and survival of organisms. |
format | Online Article Text |
id | pubmed-8145682 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81456822021-05-26 Blood Pressure Regulation Evolved from Basic Homeostatic Components Botzer, Alon Finkelstein, Yoram Unger, Ron Biomedicines Article Blood pressure (BP) is determined by several physiological factors that are regulated by a range of complex neural, endocrine, and paracrine mechanisms. This study examined a collection of 198 human genes related to BP regulation, in the biological processes and functional prisms, as well as gene expression in organs and tissues. This was made in conjunction with an orthology analysis performed in 19 target organisms along the phylogenetic tree. We have demonstrated that transport and signaling, as well as homeostasis in general, are the most prevalent biological processes associated with BP gene orthologs across the examined species. We showed that these genes and their orthologs are expressed primarily in the kidney and adrenals of complex organisms (e.g., high order vertebrates) and in the nervous system of low complexity organisms (e.g., flies, nematodes). Furthermore, we have determined that basic functions such as ion transport are ancient and appear in all organisms, while more complex regulatory functions, such as control of extracellular volume emerged in high order organisms. Thus, we conclude that the complex system of BP regulation evolved from simpler components that were utilized to maintain specific homeostatic functions that play key roles in existence and survival of organisms. MDPI 2021-04-25 /pmc/articles/PMC8145682/ /pubmed/33923023 http://dx.doi.org/10.3390/biomedicines9050469 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Botzer, Alon Finkelstein, Yoram Unger, Ron Blood Pressure Regulation Evolved from Basic Homeostatic Components |
title | Blood Pressure Regulation Evolved from Basic Homeostatic Components |
title_full | Blood Pressure Regulation Evolved from Basic Homeostatic Components |
title_fullStr | Blood Pressure Regulation Evolved from Basic Homeostatic Components |
title_full_unstemmed | Blood Pressure Regulation Evolved from Basic Homeostatic Components |
title_short | Blood Pressure Regulation Evolved from Basic Homeostatic Components |
title_sort | blood pressure regulation evolved from basic homeostatic components |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8145682/ https://www.ncbi.nlm.nih.gov/pubmed/33923023 http://dx.doi.org/10.3390/biomedicines9050469 |
work_keys_str_mv | AT botzeralon bloodpressureregulationevolvedfrombasichomeostaticcomponents AT finkelsteinyoram bloodpressureregulationevolvedfrombasichomeostaticcomponents AT ungerron bloodpressureregulationevolvedfrombasichomeostaticcomponents |