Cargando…
CSConv2d: A 2-D Structural Convolution Neural Network with a Channel and Spatial Attention Mechanism for Protein-Ligand Binding Affinity Prediction
The binding affinity of small molecules to receptor proteins is essential to drug discovery and drug repositioning. Chemical methods are often time-consuming and costly, and models for calculating the binding affinity are imperative. In this study, we propose a novel deep learning method, namely CSC...
Autores principales: | Wang, Xun, Liu, Dayan, Zhu, Jinfu, Rodriguez-Paton, Alfonso, Song, Tao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8145762/ https://www.ncbi.nlm.nih.gov/pubmed/33925310 http://dx.doi.org/10.3390/biom11050643 |
Ejemplares similares
-
SE-OnionNet: A Convolution Neural Network for Protein–Ligand Binding Affinity Prediction
por: Wang, Shudong, et al.
Publicado: (2021) -
A Novel Method to Inspect 3D Ball Joint Socket Products Using 2D Convolutional Neural Network with Spatial and Channel Attention
por: Mustafaev, Bekhzod, et al.
Publicado: (2022) -
Spatial Attention-Based 3D Graph Convolutional Neural Network for Sign Language Recognition
por: Al-Hammadi, Muneer, et al.
Publicado: (2022) -
AK-Score: Accurate Protein-Ligand Binding Affinity Prediction Using an Ensemble of 3D-Convolutional Neural Networks
por: Kwon, Yongbeom, et al.
Publicado: (2020) -
Sfcnn: a novel scoring function based on 3D convolutional neural network for accurate and stable protein–ligand affinity prediction
por: Wang, Yu, et al.
Publicado: (2022)