Cargando…
Genome-wide DNA mutations in Arabidopsis plants after multigenerational exposure to high temperatures
BACKGROUND: Elevated temperatures can cause physiological, biochemical, and molecular responses in plants that can greatly affect their growth and development. Mutations are the most fundamental force driving biological evolution. However, how long-term elevations in temperature influence the accumu...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8145854/ https://www.ncbi.nlm.nih.gov/pubmed/34034794 http://dx.doi.org/10.1186/s13059-021-02381-4 |
_version_ | 1783697265566679040 |
---|---|
author | Lu, Zhaogeng Cui, Jiawen Wang, Li Teng, Nianjun Zhang, Shoudong Lam, Hon-Ming Zhu, Yingfang Xiao, Siwei Ke, Wensi Lin, Jinxing Xu, Chenwu Jin, Biao |
author_facet | Lu, Zhaogeng Cui, Jiawen Wang, Li Teng, Nianjun Zhang, Shoudong Lam, Hon-Ming Zhu, Yingfang Xiao, Siwei Ke, Wensi Lin, Jinxing Xu, Chenwu Jin, Biao |
author_sort | Lu, Zhaogeng |
collection | PubMed |
description | BACKGROUND: Elevated temperatures can cause physiological, biochemical, and molecular responses in plants that can greatly affect their growth and development. Mutations are the most fundamental force driving biological evolution. However, how long-term elevations in temperature influence the accumulation of mutations in plants remains unknown. RESULTS: Multigenerational exposure of Arabidopsis MA (mutation accumulation) lines and MA populations to extreme heat and moderate warming results in significantly increased mutation rates in single-nucleotide variants (SNVs) and small indels. We observe distinctive mutational spectra under extreme and moderately elevated temperatures, with significant increases in transition and transversion frequencies. Mutation occurs more frequently in intergenic regions, coding regions, and transposable elements in plants grown under elevated temperatures. At elevated temperatures, more mutations accumulate in genes associated with defense responses, DNA repair, and signaling. Notably, the distribution patterns of mutations among all progeny differ between MA populations and MA lines, suggesting that stronger selection effects occurred in populations. Methylation is observed more frequently at mutation sites, indicating its contribution to the mutation process at elevated temperatures. Mutations occurring within the same genome under elevated temperatures are significantly biased toward low gene density regions, special trinucleotides, tandem repeats, and adjacent simple repeats. Additionally, mutations found in all progeny overlap significantly with genetic variations reported in 1001 Genomes, suggesting non-uniform distribution of de novo mutations through the genome. CONCLUSION: Collectively, our results suggest that elevated temperatures can accelerate the accumulation, and alter the molecular profiles, of DNA mutations in plants, thus providing significant insight into how environmental temperatures fuel plant evolution. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-021-02381-4. |
format | Online Article Text |
id | pubmed-8145854 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-81458542021-05-25 Genome-wide DNA mutations in Arabidopsis plants after multigenerational exposure to high temperatures Lu, Zhaogeng Cui, Jiawen Wang, Li Teng, Nianjun Zhang, Shoudong Lam, Hon-Ming Zhu, Yingfang Xiao, Siwei Ke, Wensi Lin, Jinxing Xu, Chenwu Jin, Biao Genome Biol Research BACKGROUND: Elevated temperatures can cause physiological, biochemical, and molecular responses in plants that can greatly affect their growth and development. Mutations are the most fundamental force driving biological evolution. However, how long-term elevations in temperature influence the accumulation of mutations in plants remains unknown. RESULTS: Multigenerational exposure of Arabidopsis MA (mutation accumulation) lines and MA populations to extreme heat and moderate warming results in significantly increased mutation rates in single-nucleotide variants (SNVs) and small indels. We observe distinctive mutational spectra under extreme and moderately elevated temperatures, with significant increases in transition and transversion frequencies. Mutation occurs more frequently in intergenic regions, coding regions, and transposable elements in plants grown under elevated temperatures. At elevated temperatures, more mutations accumulate in genes associated with defense responses, DNA repair, and signaling. Notably, the distribution patterns of mutations among all progeny differ between MA populations and MA lines, suggesting that stronger selection effects occurred in populations. Methylation is observed more frequently at mutation sites, indicating its contribution to the mutation process at elevated temperatures. Mutations occurring within the same genome under elevated temperatures are significantly biased toward low gene density regions, special trinucleotides, tandem repeats, and adjacent simple repeats. Additionally, mutations found in all progeny overlap significantly with genetic variations reported in 1001 Genomes, suggesting non-uniform distribution of de novo mutations through the genome. CONCLUSION: Collectively, our results suggest that elevated temperatures can accelerate the accumulation, and alter the molecular profiles, of DNA mutations in plants, thus providing significant insight into how environmental temperatures fuel plant evolution. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-021-02381-4. BioMed Central 2021-05-25 /pmc/articles/PMC8145854/ /pubmed/34034794 http://dx.doi.org/10.1186/s13059-021-02381-4 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Lu, Zhaogeng Cui, Jiawen Wang, Li Teng, Nianjun Zhang, Shoudong Lam, Hon-Ming Zhu, Yingfang Xiao, Siwei Ke, Wensi Lin, Jinxing Xu, Chenwu Jin, Biao Genome-wide DNA mutations in Arabidopsis plants after multigenerational exposure to high temperatures |
title | Genome-wide DNA mutations in Arabidopsis plants after multigenerational exposure to high temperatures |
title_full | Genome-wide DNA mutations in Arabidopsis plants after multigenerational exposure to high temperatures |
title_fullStr | Genome-wide DNA mutations in Arabidopsis plants after multigenerational exposure to high temperatures |
title_full_unstemmed | Genome-wide DNA mutations in Arabidopsis plants after multigenerational exposure to high temperatures |
title_short | Genome-wide DNA mutations in Arabidopsis plants after multigenerational exposure to high temperatures |
title_sort | genome-wide dna mutations in arabidopsis plants after multigenerational exposure to high temperatures |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8145854/ https://www.ncbi.nlm.nih.gov/pubmed/34034794 http://dx.doi.org/10.1186/s13059-021-02381-4 |
work_keys_str_mv | AT luzhaogeng genomewidednamutationsinarabidopsisplantsaftermultigenerationalexposuretohightemperatures AT cuijiawen genomewidednamutationsinarabidopsisplantsaftermultigenerationalexposuretohightemperatures AT wangli genomewidednamutationsinarabidopsisplantsaftermultigenerationalexposuretohightemperatures AT tengnianjun genomewidednamutationsinarabidopsisplantsaftermultigenerationalexposuretohightemperatures AT zhangshoudong genomewidednamutationsinarabidopsisplantsaftermultigenerationalexposuretohightemperatures AT lamhonming genomewidednamutationsinarabidopsisplantsaftermultigenerationalexposuretohightemperatures AT zhuyingfang genomewidednamutationsinarabidopsisplantsaftermultigenerationalexposuretohightemperatures AT xiaosiwei genomewidednamutationsinarabidopsisplantsaftermultigenerationalexposuretohightemperatures AT kewensi genomewidednamutationsinarabidopsisplantsaftermultigenerationalexposuretohightemperatures AT linjinxing genomewidednamutationsinarabidopsisplantsaftermultigenerationalexposuretohightemperatures AT xuchenwu genomewidednamutationsinarabidopsisplantsaftermultigenerationalexposuretohightemperatures AT jinbiao genomewidednamutationsinarabidopsisplantsaftermultigenerationalexposuretohightemperatures |