Cargando…

The Kinetics of Chitosan Degradation in Organic Acid Solutions

This paper presents a comparative study on chitosan degradation in organic acid solutions according to their different dissociation characteristics. More precisely, the aim of the study was to determine the kinetics of the degradation process depending on the different acid dissociation constants (p...

Descripción completa

Detalles Bibliográficos
Autores principales: Sikorski, Dominik, Gzyra-Jagieła, Karolina, Draczyński, Zbigniew
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8145880/
https://www.ncbi.nlm.nih.gov/pubmed/33922254
http://dx.doi.org/10.3390/md19050236
Descripción
Sumario:This paper presents a comparative study on chitosan degradation in organic acid solutions according to their different dissociation characteristics. More precisely, the aim of the study was to determine the kinetics of the degradation process depending on the different acid dissociation constants (pKa values). The scientists involved in chitosan to date have focused mainly on acetic acid solutions. Solutions of lactic, acetic, malic, and formic acids in concentrations of 3% wt. were used in this research. The progress of degradation was determined based on the intrinsic viscosity measurement, GPC/SEC chromatographic analysis, and their correlation. Changes in the viscosity parameters were performed at a temperature of 20 °C ± 1 °C and a timeframe of up to 168 h (7 days). The chemical structure and DDA of the initial chitosan were analyzed using 1H-NMR spectroscopy analysis. The results of this study can be considered of high importance for the purpose of electrospinning, production of micro- and nano-capsules for drug delivery, and other types of processing. Understanding the influence of the dissociation constant of the solvent on the kinetics of chitosan degradation will allow the selection of an appropriate medium, ensuring an effective and stable spinning process, in which the occurrence of polymer degradation is unfavorable.