Cargando…

Population Pharmacokinetic Modelling and Simulation to Determine the Optimal Dose of Nanoparticulated Sorafenib to the Reference Sorafenib

Sorafenib, an oral multikinase inhibitor, exhibits a highly variable absorption profile due to enterohepatic reabsorption and poor solubility. SYO-1644 improved the solubility of sorafenib by nanoparticulation technology leading to enhanced bioavailability. To evaluate the pharmacokinetically equiva...

Descripción completa

Detalles Bibliográficos
Autores principales: Huh, Ki-Young, Hwang, Se-jung, Park, Sang-Yeob, Lim, Hye-Jung, Jin, Mir-yung, Oh, Jae-seong, Yu, Kyung-Sang, Chung, Jae-Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8145937/
https://www.ncbi.nlm.nih.gov/pubmed/33925058
http://dx.doi.org/10.3390/pharmaceutics13050629
Descripción
Sumario:Sorafenib, an oral multikinase inhibitor, exhibits a highly variable absorption profile due to enterohepatic reabsorption and poor solubility. SYO-1644 improved the solubility of sorafenib by nanoparticulation technology leading to enhanced bioavailability. To evaluate the pharmacokinetically equivalent dose of SYO-1644 to the reference Nexavar(®) 200 mg, a randomized, open-label, replicated two-period study was conducted in healthy volunteers. A total of 32 subjects orally received a single dose of the following assigned treatment under a fasted state in the first period and repeated once more in the second period with a two-week washout: SYO-1644 100, 150 and 200 mg and Nexavar(®) 200 mg. Pharmacokinetic (PK) samples were collected up to 168 h post-dose. The PK profile was evaluated by both non-compartmental analysis and population PK method. With the final model, 2 × 2 crossover trial scenarios with Nexavar(®) 200 mg and each dose of SYO-1644 ranging from 100 to 150 mg were repeated 500 times by Monte Carlo simulation, and the proportion of bioequivalence achievement was assessed. Transit absorption compartments, followed by a one-compartment model with first-order elimination and enterohepatic reabsorption components were selected as the final model. The simulation results demonstrated that the SYO-1644 dose between 120 and 125 mg could yielded the highest proportion of bioequivalence.