Cargando…

The Unfolded Protein Response: An Overview

SIMPLE SUMMARY: The unfolded protein response (UPR) is the cells’ way of maintaining the balance of protein folding in the endoplasmic reticulum, which is the section of the cell designated for folding proteins with specific destinations such as other organelles or to be secreted by the cell. The UP...

Descripción completa

Detalles Bibliográficos
Autores principales: Read, Adam, Schröder, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8146082/
https://www.ncbi.nlm.nih.gov/pubmed/33946669
http://dx.doi.org/10.3390/biology10050384
_version_ 1783697317792055296
author Read, Adam
Schröder, Martin
author_facet Read, Adam
Schröder, Martin
author_sort Read, Adam
collection PubMed
description SIMPLE SUMMARY: The unfolded protein response (UPR) is the cells’ way of maintaining the balance of protein folding in the endoplasmic reticulum, which is the section of the cell designated for folding proteins with specific destinations such as other organelles or to be secreted by the cell. The UPR is activated when unfolded proteins accumulate in the endoplasmic reticulum. This accumulation puts a greater load on the molecules in charge of folding the proteins, and therefore the UPR works to balance this by lowering the number of unfolded proteins present in the cell. This is done in multiple ways, such as lowering the number of proteins that need to be folded; increasing the folding ability of the endoplasmic reticulum and by removing some of the unfolded proteins which take longer to fold. If the UPR is successful at reducing the number of unfolded proteins, the UPR is inactivated and the cells protein folding balance is returned to normal. However, if the UPR is unsuccessful, then this can lead to cell death. ABSTRACT: The unfolded protein response is the mechanism by which cells control endoplasmic reticulum (ER) protein homeostasis. Under normal conditions, the UPR is not activated; however, under certain stresses, such as hypoxia or altered glycosylation, the UPR can be activated due to an accumulation of unfolded proteins. The activation of the UPR involves three signaling pathways, IRE1, PERK and ATF6, which all play vital roles in returning protein homeostasis to levels seen in non-stressed cells. IRE1 is the best studied of the three pathways, as it is the only pathway present in Saccharomyces cerevisiae. This pathway involves spliceosome independent splicing of HAC1 or XBP1 in yeast and mammalians cells, respectively. PERK limits protein synthesis, therefore reducing the number of new proteins requiring folding. ATF6 is translocated and proteolytically cleaved, releasing a NH(2) domain fragment which is transported to the nucleus and which affects gene expression. If the UPR is unsuccessful at reducing the load of unfolded proteins in the ER and the UPR signals remain activated, this can lead to programmed cell death.
format Online
Article
Text
id pubmed-8146082
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-81460822021-05-26 The Unfolded Protein Response: An Overview Read, Adam Schröder, Martin Biology (Basel) Review SIMPLE SUMMARY: The unfolded protein response (UPR) is the cells’ way of maintaining the balance of protein folding in the endoplasmic reticulum, which is the section of the cell designated for folding proteins with specific destinations such as other organelles or to be secreted by the cell. The UPR is activated when unfolded proteins accumulate in the endoplasmic reticulum. This accumulation puts a greater load on the molecules in charge of folding the proteins, and therefore the UPR works to balance this by lowering the number of unfolded proteins present in the cell. This is done in multiple ways, such as lowering the number of proteins that need to be folded; increasing the folding ability of the endoplasmic reticulum and by removing some of the unfolded proteins which take longer to fold. If the UPR is successful at reducing the number of unfolded proteins, the UPR is inactivated and the cells protein folding balance is returned to normal. However, if the UPR is unsuccessful, then this can lead to cell death. ABSTRACT: The unfolded protein response is the mechanism by which cells control endoplasmic reticulum (ER) protein homeostasis. Under normal conditions, the UPR is not activated; however, under certain stresses, such as hypoxia or altered glycosylation, the UPR can be activated due to an accumulation of unfolded proteins. The activation of the UPR involves three signaling pathways, IRE1, PERK and ATF6, which all play vital roles in returning protein homeostasis to levels seen in non-stressed cells. IRE1 is the best studied of the three pathways, as it is the only pathway present in Saccharomyces cerevisiae. This pathway involves spliceosome independent splicing of HAC1 or XBP1 in yeast and mammalians cells, respectively. PERK limits protein synthesis, therefore reducing the number of new proteins requiring folding. ATF6 is translocated and proteolytically cleaved, releasing a NH(2) domain fragment which is transported to the nucleus and which affects gene expression. If the UPR is unsuccessful at reducing the load of unfolded proteins in the ER and the UPR signals remain activated, this can lead to programmed cell death. MDPI 2021-04-29 /pmc/articles/PMC8146082/ /pubmed/33946669 http://dx.doi.org/10.3390/biology10050384 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Read, Adam
Schröder, Martin
The Unfolded Protein Response: An Overview
title The Unfolded Protein Response: An Overview
title_full The Unfolded Protein Response: An Overview
title_fullStr The Unfolded Protein Response: An Overview
title_full_unstemmed The Unfolded Protein Response: An Overview
title_short The Unfolded Protein Response: An Overview
title_sort unfolded protein response: an overview
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8146082/
https://www.ncbi.nlm.nih.gov/pubmed/33946669
http://dx.doi.org/10.3390/biology10050384
work_keys_str_mv AT readadam theunfoldedproteinresponseanoverview
AT schrodermartin theunfoldedproteinresponseanoverview
AT readadam unfoldedproteinresponseanoverview
AT schrodermartin unfoldedproteinresponseanoverview