Cargando…

Lateral Degassing Method for Disposable Film-Chip Microfluidic Devices

It is critical to develop a fast and simple method to remove air bubbles inside microchannels for automated, reliable, and reproducible microfluidic devices. As an active degassing method, this study introduces a lateral degassing method that can be easily implemented in disposable film-chip microfl...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Suhee, Cho, Hyungseok, Kim, Junhyeong, Han, Ki-Ho
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8146472/
https://www.ncbi.nlm.nih.gov/pubmed/33925874
http://dx.doi.org/10.3390/membranes11050316
Descripción
Sumario:It is critical to develop a fast and simple method to remove air bubbles inside microchannels for automated, reliable, and reproducible microfluidic devices. As an active degassing method, this study introduces a lateral degassing method that can be easily implemented in disposable film-chip microfluidic devices. This method uses a disposable film-chip microchannel superstrate and a reusable substrate, which can be assembled and disassembled simply by vacuum pressure. The disposable microchannel superstrate is readily fabricated by bonding a microstructured polydimethylsiloxane replica and a silicone-coated release polymeric thin film. The reusable substrate can be a plate that has no function or is equipped with the ability to actively manipulate and sense substances in the microchannel by an elaborately patterned energy field. The degassing rate of the lateral degassing method and the maximum available pressure in the microchannel equipped with lateral degassing were evaluated. The usefulness of this method was demonstrated using complex structured microfluidic devices, such as a meandering microchannel, a microvortex, a gradient micromixer, and a herringbone micromixer, which often suffer from bubble formation. In conclusion, as an easy-to-implement and easy-to-use technique, the lateral degassing method will be a key technique to address the bubble formation problem of microfluidic devices.