Cargando…
Scaffold-based molecular design with a graph generative model
Searching for new molecules in areas like drug discovery often starts from the core structures of known molecules. Such a method has called for a strategy of designing derivative compounds retaining a particular scaffold as a substructure. On this account, our present work proposes a graph generativ...
Autores principales: | Lim, Jaechang, Hwang, Sang-Yeon, Moon, Seokhyun, Kim, Seungsu, Kim, Woo Youn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8146476/ https://www.ncbi.nlm.nih.gov/pubmed/34084372 http://dx.doi.org/10.1039/c9sc04503a |
Ejemplares similares
-
PIGNet: a physics-informed deep learning model toward generalized drug–target interaction predictions
por: Moon, Seokhyun, et al.
Publicado: (2022) -
Molecular generative model based on conditional variational autoencoder for de novo molecular design
por: Lim, Jaechang, et al.
Publicado: (2018) -
Molecular Generative Model via Retrosynthetically Prepared Chemical Building Block Assembly
por: Seo, Seonghwan, et al.
Publicado: (2023) -
Molecular Generative Model via Retrosynthetically Prepared Chemical Building Block Assembly (Adv. Sci. 8/2023)
por: Seo, Seonghwan, et al.
Publicado: (2023) -
Drug-likeness scoring based on unsupervised learning
por: Lee, Kyunghoon, et al.
Publicado: (2021)