Cargando…

Uncommon Non-Candida Yeasts in Healthy Turkeys—Antimicrobial Susceptibility and Biochemical Characteristic of Trichosporon Isolates

The microbiota of the gastrointestinal tract of humans and animals is inhabited by a diverse community of bacteria, fungi, protozoa, and viruses. In cases where there is an imbalance in the normal microflora or an immunosuppression on the part of the host, these opportunistic microorganisms can caus...

Descripción completa

Detalles Bibliográficos
Autores principales: Bobrek, Kamila, Sokół, Ireneusz, Gaweł, Andrzej
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8146614/
https://www.ncbi.nlm.nih.gov/pubmed/33946204
http://dx.doi.org/10.3390/pathogens10050538
Descripción
Sumario:The microbiota of the gastrointestinal tract of humans and animals is inhabited by a diverse community of bacteria, fungi, protozoa, and viruses. In cases where there is an imbalance in the normal microflora or an immunosuppression on the part of the host, these opportunistic microorganisms can cause severe infections. The study presented here evaluates the biochemical and antifungal susceptibility features of Trichosporon spp., uncommon non-Candida strains isolated from the gastrointestinal tract of healthy turkeys. The Trichosporon coremiiforme and Trichosporon (Apiotrichum) montevideense accounted for 7.7% of all fungi isolates. The biochemical tests showed that Trichosporon coremiiforme had active esterase (C4), esterase-lipase (C8) valine arylamidase, naphthol-AS-BI phosphohydrolase, α-galactosidase, and β-glucosidase. Likewise, Trichosporon montevideense demonstrated esterase-lipase (C8), lipase (C14), valine arylamidase, naphthol-AS-BI phosphohydrolase, α-galactosidase, and β-glucosidase activity. T.coremiiforme and T. monteviidense isolated from turkeys were itraconazole resistant and amphotericin B, fluconazole, and voriconazole susceptible. Compared with human isolates, the MIC range and MIC values of turkey isolates to itraconazole were in a higher range limit in both species, while MIC values to amphotericin B, fluconazole, and voriconazole were in a lower range limit. Furthermore, the obtained ITS1—5.8rRNA—ITS2 fragment sequences were identical with T. coremiiforme and T. montevideense sequences isolated from humans indicating that these isolates are shared pathogens.