Cargando…

Independent Control Over Size and Surface Density of Droplet Epitaxial Nanostructures Using Ultra-Low Arsenic Fluxes

Modern and future nanoelectronic and nanophotonic applications require precise control of the size, shape and density of III-V quantum dots in order to predefine the characteristics of devices based on them. In this paper, we propose a new approach to control the size of nanostructures formed by dro...

Descripción completa

Detalles Bibliográficos
Autores principales: Balakirev, Sergey V., Chernenko, Natalia E., Eremenko, Mikhail M., Ageev, Oleg A., Solodovnik, Maxim S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8146642/
https://www.ncbi.nlm.nih.gov/pubmed/33946198
http://dx.doi.org/10.3390/nano11051184
_version_ 1783697443063332864
author Balakirev, Sergey V.
Chernenko, Natalia E.
Eremenko, Mikhail M.
Ageev, Oleg A.
Solodovnik, Maxim S.
author_facet Balakirev, Sergey V.
Chernenko, Natalia E.
Eremenko, Mikhail M.
Ageev, Oleg A.
Solodovnik, Maxim S.
author_sort Balakirev, Sergey V.
collection PubMed
description Modern and future nanoelectronic and nanophotonic applications require precise control of the size, shape and density of III-V quantum dots in order to predefine the characteristics of devices based on them. In this paper, we propose a new approach to control the size of nanostructures formed by droplet epitaxy. We reveal that it is possible to reduce the droplet volume independently of the growth temperature and deposition amount by exposing droplets to ultra-low group-V flux. We carry out a thorough study of the effect of arsenic pressure on the droplet characteristics and demonstrate that indium droplets with a large initial size (>100 nm) and a low surface density (<10(8) cm(−2)) are able to shrink to dimensions appropriate for quantum dot applications. Small droplets are found to be unstable and difficult to control, while larger droplets are more resistive to arsenic flux and can be reduced to stable, small-sized nanostructures (~30 nm). We demonstrate the growth conditions under which droplets transform into dots, ring and holes and describe a mechanism of this transformation depending on the ultra-low arsenic flux. Thus, we observe phenomena which significantly expand the capabilities of droplet epitaxy.
format Online
Article
Text
id pubmed-8146642
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-81466422021-05-26 Independent Control Over Size and Surface Density of Droplet Epitaxial Nanostructures Using Ultra-Low Arsenic Fluxes Balakirev, Sergey V. Chernenko, Natalia E. Eremenko, Mikhail M. Ageev, Oleg A. Solodovnik, Maxim S. Nanomaterials (Basel) Article Modern and future nanoelectronic and nanophotonic applications require precise control of the size, shape and density of III-V quantum dots in order to predefine the characteristics of devices based on them. In this paper, we propose a new approach to control the size of nanostructures formed by droplet epitaxy. We reveal that it is possible to reduce the droplet volume independently of the growth temperature and deposition amount by exposing droplets to ultra-low group-V flux. We carry out a thorough study of the effect of arsenic pressure on the droplet characteristics and demonstrate that indium droplets with a large initial size (>100 nm) and a low surface density (<10(8) cm(−2)) are able to shrink to dimensions appropriate for quantum dot applications. Small droplets are found to be unstable and difficult to control, while larger droplets are more resistive to arsenic flux and can be reduced to stable, small-sized nanostructures (~30 nm). We demonstrate the growth conditions under which droplets transform into dots, ring and holes and describe a mechanism of this transformation depending on the ultra-low arsenic flux. Thus, we observe phenomena which significantly expand the capabilities of droplet epitaxy. MDPI 2021-04-30 /pmc/articles/PMC8146642/ /pubmed/33946198 http://dx.doi.org/10.3390/nano11051184 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Balakirev, Sergey V.
Chernenko, Natalia E.
Eremenko, Mikhail M.
Ageev, Oleg A.
Solodovnik, Maxim S.
Independent Control Over Size and Surface Density of Droplet Epitaxial Nanostructures Using Ultra-Low Arsenic Fluxes
title Independent Control Over Size and Surface Density of Droplet Epitaxial Nanostructures Using Ultra-Low Arsenic Fluxes
title_full Independent Control Over Size and Surface Density of Droplet Epitaxial Nanostructures Using Ultra-Low Arsenic Fluxes
title_fullStr Independent Control Over Size and Surface Density of Droplet Epitaxial Nanostructures Using Ultra-Low Arsenic Fluxes
title_full_unstemmed Independent Control Over Size and Surface Density of Droplet Epitaxial Nanostructures Using Ultra-Low Arsenic Fluxes
title_short Independent Control Over Size and Surface Density of Droplet Epitaxial Nanostructures Using Ultra-Low Arsenic Fluxes
title_sort independent control over size and surface density of droplet epitaxial nanostructures using ultra-low arsenic fluxes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8146642/
https://www.ncbi.nlm.nih.gov/pubmed/33946198
http://dx.doi.org/10.3390/nano11051184
work_keys_str_mv AT balakirevsergeyv independentcontroloversizeandsurfacedensityofdropletepitaxialnanostructuresusingultralowarsenicfluxes
AT chernenkonataliae independentcontroloversizeandsurfacedensityofdropletepitaxialnanostructuresusingultralowarsenicfluxes
AT eremenkomikhailm independentcontroloversizeandsurfacedensityofdropletepitaxialnanostructuresusingultralowarsenicfluxes
AT ageevolega independentcontroloversizeandsurfacedensityofdropletepitaxialnanostructuresusingultralowarsenicfluxes
AT solodovnikmaxims independentcontroloversizeandsurfacedensityofdropletepitaxialnanostructuresusingultralowarsenicfluxes