Cargando…

Investigation of Mitochondrial Adaptations to Modulation of Carbohydrate Supply during Adipogenesis of 3T3-L1 Cells by Targeted (1)H-NMR Spectroscopy

(1) Background: White adipose tissue (WAT) is a dynamic and plastic tissue showing high sensitivity to carbohydrate supply. In such a context, the WAT may accordingly modulate its mitochondrial metabolic activity. We previously demonstrated that a partial replacement of glucose by galactose in a cul...

Descripción completa

Detalles Bibliográficos
Autores principales: Delcourt, Manon, Delsinne, Virginie, Colet, Jean-Marie, Declèves, Anne-Emilie, Tagliatti, Vanessa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8146760/
https://www.ncbi.nlm.nih.gov/pubmed/33947124
http://dx.doi.org/10.3390/biom11050662
Descripción
Sumario:(1) Background: White adipose tissue (WAT) is a dynamic and plastic tissue showing high sensitivity to carbohydrate supply. In such a context, the WAT may accordingly modulate its mitochondrial metabolic activity. We previously demonstrated that a partial replacement of glucose by galactose in a culture medium of 3T3-L1 cells leads to a poorer adipogenic yield and improved global mitochondrial health. In the present study, we investigate key mitochondrial metabolic actors reflecting mitochondrial adaptation in response to different carbohydrate supplies. (2) Methods: The metabolome of 3T3-L1 cells was investigated during the differentiation process using different glucose/galactose ratios and by a targeted approach using (1)H-NMR (Proton nuclear magnetic resonance) spectroscopy; (3) Results: Our findings indicate a reduction of adipogenic and metabolic overload markers under the low glucose/galactose condition. In addition, a remodeling of the mitochondrial function triggers the secretion of metabolites with signaling and systemic energetical homeostasis functions. Finally, this study also sheds light on a new way to consider the mitochondrial metabolic function by considering noncarbohydrates related pathways reflecting both healthier cellular and mitochondrial adaptation mechanisms; (4) Conclusions: Different carbohydrates supplies induce deep mitochondrial metabolic and function adaptations leading to overall adipocytes function and profile remodeling during the adipogenesis.