Cargando…

MED12-Related (Neuro)Developmental Disorders: A Question of Causality

MED12 is a member of the Mediator complex that is involved in the regulation of transcription. Missense variants in MED12 cause FG syndrome, Lujan-Fryns syndrome, and Ohdo syndrome, as well as non-syndromic intellectual disability (ID) in hemizygous males. Recently, female patients with de novo miss...

Descripción completa

Detalles Bibliográficos
Autores principales: van de Plassche, Stijn R., de Brouwer, Arjan P. M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8146938/
https://www.ncbi.nlm.nih.gov/pubmed/33925166
http://dx.doi.org/10.3390/genes12050663
_version_ 1783697513478356992
author van de Plassche, Stijn R.
de Brouwer, Arjan P. M.
author_facet van de Plassche, Stijn R.
de Brouwer, Arjan P. M.
author_sort van de Plassche, Stijn R.
collection PubMed
description MED12 is a member of the Mediator complex that is involved in the regulation of transcription. Missense variants in MED12 cause FG syndrome, Lujan-Fryns syndrome, and Ohdo syndrome, as well as non-syndromic intellectual disability (ID) in hemizygous males. Recently, female patients with de novo missense variants and de novo protein truncating variants in MED12 were described, resulting in a clinical spectrum centered around ID and Hardikar syndrome without ID. The missense variants are found throughout MED12, whether they are inherited in hemizygous males or de novo in females. They can result in syndromic or nonsyndromic ID. The de novo nonsense variants resulting in Hardikar syndrome that is characterized by facial clefting, pigmentary retinopathy, biliary anomalies, and intestinal malrotation, are found more N-terminally, whereas the more C-terminally positioned variants are de novo protein truncating variants that cause a severe, syndromic phenotype consisting of ID, facial dysmorphism, short stature, skeletal abnormalities, feeding difficulties, and variable other abnormalities. This broad range of distinct phenotypes calls for a method to distinguish between pathogenic and non-pathogenic variants in MED12. We propose an isogenic iNeuron model to establish the unique gene expression patterns that are associated with the specific MED12 variants. The discovery of these patterns would help in future diagnostics and determine the causality of the MED12 variants.
format Online
Article
Text
id pubmed-8146938
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-81469382021-05-26 MED12-Related (Neuro)Developmental Disorders: A Question of Causality van de Plassche, Stijn R. de Brouwer, Arjan P. M. Genes (Basel) Review MED12 is a member of the Mediator complex that is involved in the regulation of transcription. Missense variants in MED12 cause FG syndrome, Lujan-Fryns syndrome, and Ohdo syndrome, as well as non-syndromic intellectual disability (ID) in hemizygous males. Recently, female patients with de novo missense variants and de novo protein truncating variants in MED12 were described, resulting in a clinical spectrum centered around ID and Hardikar syndrome without ID. The missense variants are found throughout MED12, whether they are inherited in hemizygous males or de novo in females. They can result in syndromic or nonsyndromic ID. The de novo nonsense variants resulting in Hardikar syndrome that is characterized by facial clefting, pigmentary retinopathy, biliary anomalies, and intestinal malrotation, are found more N-terminally, whereas the more C-terminally positioned variants are de novo protein truncating variants that cause a severe, syndromic phenotype consisting of ID, facial dysmorphism, short stature, skeletal abnormalities, feeding difficulties, and variable other abnormalities. This broad range of distinct phenotypes calls for a method to distinguish between pathogenic and non-pathogenic variants in MED12. We propose an isogenic iNeuron model to establish the unique gene expression patterns that are associated with the specific MED12 variants. The discovery of these patterns would help in future diagnostics and determine the causality of the MED12 variants. MDPI 2021-04-28 /pmc/articles/PMC8146938/ /pubmed/33925166 http://dx.doi.org/10.3390/genes12050663 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
van de Plassche, Stijn R.
de Brouwer, Arjan P. M.
MED12-Related (Neuro)Developmental Disorders: A Question of Causality
title MED12-Related (Neuro)Developmental Disorders: A Question of Causality
title_full MED12-Related (Neuro)Developmental Disorders: A Question of Causality
title_fullStr MED12-Related (Neuro)Developmental Disorders: A Question of Causality
title_full_unstemmed MED12-Related (Neuro)Developmental Disorders: A Question of Causality
title_short MED12-Related (Neuro)Developmental Disorders: A Question of Causality
title_sort med12-related (neuro)developmental disorders: a question of causality
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8146938/
https://www.ncbi.nlm.nih.gov/pubmed/33925166
http://dx.doi.org/10.3390/genes12050663
work_keys_str_mv AT vandeplasschestijnr med12relatedneurodevelopmentaldisordersaquestionofcausality
AT debrouwerarjanpm med12relatedneurodevelopmentaldisordersaquestionofcausality