Cargando…
Development and Clinical Evaluation of an Immunochromatography-Based Rapid Antigen Test (GenBody™ COVAG025) for COVID-19 Diagnosis
Antigen tests for SARS-CoV-2 diagnosis are simpler and faster than their molecular counterparts. Clinical validation of such tests is a prerequisite before their field applications. We developed and clinically evaluated an immunochromatographic immunoassay, GenBody™ COVAG025, for the rapid detection...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8146967/ https://www.ncbi.nlm.nih.gov/pubmed/33946860 http://dx.doi.org/10.3390/v13050796 |
Sumario: | Antigen tests for SARS-CoV-2 diagnosis are simpler and faster than their molecular counterparts. Clinical validation of such tests is a prerequisite before their field applications. We developed and clinically evaluated an immunochromatographic immunoassay, GenBody™ COVAG025, for the rapid detection of SARS-CoV-2 nucleocapsid (NP) antigen in two different clinical studies. Retrospectively, 130 residual nasopharyngeal swabs transferred in viral transport medium (VTM), pre-examined for COVID-19 through emergency use authorization (EUA)-approved real-time RT-PCR assay and tested with GenBody™ COVAG025, revealed a sensitivity and specificity of 90.00% (27/30; 95% CI: 73.47% to 97.89%) and 98.00% (98/100; 95% CI: 92.96% to 99.76%), respectively, fulfilling WHO guidelines. Subsequently, the prospective examination of 200 symptomatic and asymptomatic nasopharyngeal swabs, collected on site and tested with GenBody™ COVAG025 and EUA-approved real-time RT-PCR assay simultaneously, revealed a significantly higher sensitivity and specificity of 94.00% (94/100; 95% CI: 87.40% to 97.77%) and 100.00% (100/100; 95% CI: 96.38% to 100.00%), respectively. Clinical sensitivity and specificity were significantly high for samples with Ct values ≤ 30 as well as within 3 days of symptom onset, justifying its dependency on the viral load. Thus, it is assumed this can help with the accurate diagnosis and timely isolation and treatment of patients with COVID-19, contributing to better control of the global pandemic. |
---|